Amplitude Variation with Offsets and Azimuths Simultaneous Inversion for Elastic and Fracture Parameters
Abstract - 749
PDF

Keywords

AVAZ
Fracture weaknesses
Seismic scattering coefficient
Stable phase approximation.

How to Cite

1.
Zhaoyun Zong, Xingyao Yin, Guochen Wu. Amplitude Variation with Offsets and Azimuths Simultaneous Inversion for Elastic and Fracture Parameters. Int. J. Pet. Technol. [Internet]. 2015 Jan. 8 [cited 2024 Oct. 14];1(2):41-7. Available from: https://avantipublishers.com/index.php/ijpt/article/view/148

Abstract

Azimuthal elastic inversion or AVO/AVA analysis has proven to be effective for fracture description and stress evaluation in unconventional resource plays. Fracture weakness including normal and tangential weakness from linear slip theory bridge the seismic data and fracturing parameters as intermediate parameters. However, the stability of the azimuthal elastic inversion methods available for anisotropic parameters or fracture parameters in field data remains challenging. This study explores a practical azimuthal simultaneous elastic inversion method in heterogeneous medium for fracture weakness estimation. Taking the heterogeneity and anisotropy of fracture media into consideration, and based on perturbation theory and stable phase approximation, the fracture medium can be considered as the superimposition of background medium and perturbation medium, and then the seismic scattering coefficient of fracture media can be derived. This equation establishes the relationship between seismic data and fracture weakness together with elastic parameters like P-wave and S-wave moduli and weaknesses. With this equation, a heterogeneous inversion method is proposed. This method implements the estimation of P-wave and S-wave moduli and fracture weaknesses simultaneously, and the constraint from initial model and multi-iterations enhances the stability of this method. In this approach, the parameters of the perturbation medium are initially estimated, and then they can be superposed to the parameters of the known background medium as the renewal parameters of the background medium in next iteration. We can yield the final estimation of the parameters in heterogeneous medium after several iterations when the last two estimated results are similar. Model test and field data examples verify the feasibility and potential of the proposed approach.
https://doi.org/10.15377/2409-787X.2014.01.02.3
PDF

References

Schoenberg M. Elastic wave behavior across linear slip interfaces. The J Acoust Soc Am 1980; 68(5): 1516-1521. http://dx.doi.org/10.1121/1.385077

Hudson J. Overall properties of a cracked solid. Cambridge Univ Press 1980; 88(2): 371-384.

Hudson J. Wave speeds and attenuation of elastic waves in material containing cracks. Geophy J Royal Astron Soc 1981; 64(1): 133-150. http://dx.doi.org/10.1111/j.1365-246X.1981.tb02662.x

Thomsen L. Weak elastic anisotropy. Geophysics 1986; 51(10): 1954-1966. http://dx.doi.org/10.1190/1.1442051

Bakulin A, Grechka V, Tsvankin I. Estimation of fracture parameters from reflection seismic data-Part I: HTI model due to a single fracture set. Geophysics 2000; 65(6): 1788- 1802. http://dx.doi.org/10.1190/1.1444863

Corrigan D, Withers R, Darnall J, Skopinski T. Fracture mapping from azimuthal velocity analysis using 3-D surface seismic data. SEG Technical Program Expanded Abstracts 1996; 1834-1837.

Tsvankin I. Anisotropic parameters and P-wave velocity for orthorhombic media. Geophysics 1997; 62(4): 1292-1309. http://dx.doi.org/10.1190/1.1444231

Grechka V, Tsvankin I. 3-D description of normal moveout in anisotropic inhomogeneous media. Geophysics 1998; 63(3): 1079-1092. http://dx.doi.org/10.1190/1.1444386

Grechka V, Tsvankin I, Lai Zhongkang. 3-D moveout inversion in azimuthally anisotropic media with lateral velocity variation; theory and a case study. Geophysics 1999; 64(4): 1202-1218. http://dx.doi.org/10.1190/1.1444627

Lynn H, Beckham W, Simon K, Bates C, Layman M, Jones M. P-wave and S-wave azimuthal anisotropy at a naturally fractured gas reservoir, Bluebell-Altamont Field, Utah. Geophysics 1999; 64(4): 1312-1328. http://dx.doi.org/10.1190/1.1444636

Jenner E. Azimuthal anisotropy of 3-D compressional wave seismic data, Weyburn field, Saskatchewan. Canada, Colorado School of Mines 2001.

Ruger A. P-wave reflection coefficients for transversely isotropic models with vertical and horizontal axis of symmetry. Geophysics 1997; 62(3): 713-722. http://dx.doi.org/10.1190/1.1444181

Sayers CM, Rickett JE. Azimuthal variation in AVO response for fractured gas sands. Geophy Prosp 1997; 45(1): 165-182. http://dx.doi.org/10.1046/j.1365-2478.1997.3180238.x

Ruger A. Variation of P-wave reflectivity with offset and azimuth in anisotropic media. Geophysics 1998; 63(3): 935- 947. http://dx.doi.org/10.1190/1.1444405

MacBeth C. Azimuthal variation in P-wave signatures due to fluid flow. Geophysics 1999; 64(4): 1181-1192. http://dx.doi.org/10.1190/1.1444625

Gray D, Roberts G, Head K. Recent advances in determination of fracture strike and crack density from Pwave seismic data. The Leading Edge 2002; 21(3): 280-285. http://dx.doi.org/10.1190/1.1463778

Hall SA, Kendall JM, Barkved OI. Fractured reservoir characterization using P-wave AVOA analysis of 3D OBC data. The Leading Edge 2002; 21(8): 777-781.

Zhu P, Wang J, Yu W, Zhu G. Inverting reservoir crack density from P-wave AVOA data: Journal of Geophysics and Engineering 2004; 1(2): 168. http://dx.doi.org/10.1088/1742-2132/1/2/010

Chen H, Brown RL, Castagna JP. AVO for one- and twofracture set models. Geophysics 2005; 70(2): C1-C5. http://dx.doi.org/10.1190/1.1884825

Downton J, Russell H. Azimuthal fourier coefficients: A simple method to estimate fracture parameters. SEG Technical Program Expanded Abstracts 2011; 269-273.

Xu Y, Li X, Dai H. Azimuthal AVO and seismic scattering attenuation in 3D fractured media: a numerical simulation study on the Discrete Fracture Model. SEG Technical Program Expanded Abstracts 2010; 483-487.

Chen H, Zhang G, Yin X. AVAZ inversion for elastic parameter and fracture fluid factor. SEG Technical Program Expanded Abstracts 2012; 1-5.

Sil S, Davidson M, Zhou C, Olson R, Swan H, Howell J, Chiu S et al. Effect of near-surface anisotropy on a deep anisotropic target layer. SEG Technical Program Expanded Abstracts 2011; 305-309.

Far M, Thomsen L, Sayers C. Seismic characterization of reservoirs with asymmetric fractures. Geophysics 2013; 78(2): N1-N10.

Fryer GJ, Frazer LN. Seismic waves in stratified anisotropic media. Geophy J Royal Astron Soc 1984; 78(3): 691-710. http://dx.doi.org/10.1111/j.1365-246X.1984.tb05065.x

Thomsen L. Elastic anisotropy due to aligned cracks in porous rock. Geophy Prosp 1995; 43(6): 805-829. http://dx.doi.org/10.1111/j.1365-2478.1995.tb00282.x

Aki K, Richards PG. Quantitative seismology. vol. 1: NY: WH Freeman and Company 1980.

Jech J, Pšenčik I. First-order perturbation method for anisotropic media. Geophys J Int 1989; 99(2): 369-376. http://dx.doi.org/10.1111/j.1365-246X.1989.tb01694.x

Shaw RK, Sen MK. Born integral, stationary phase and linearized reflection coefficients in weak anisotropic media. Geophys J Int 2004; 158(1): 225-238. http://dx.doi.org/10.1111/j.1365-246X.2004.02283.x

Shaw RK, Sen MK. Use of AVOA data to estimate fluid indicator in a vertically fractured medium. Geophysics 2006; 71(3): C15-C24.

Cerveny V, Berryman J. Seismic ray theory. Appl Mech Rev 2002; 55(6): B118-B119.

Zong Z, Yin X, Wu G. AVO inversion and poroelasticity with P- and S-wave moduli. Geophysics 2012; 77(6): N17-N24. http://dx.doi.org/10.1190/geo2011-0214.1

Zong Z, Yin X, Wu G. Elastic impedance variation with angle inversion for elastic parameters. Journal of Geophysics and Engineering 2013; 9(3): 247-260. http://dx.doi.org/10.1088/1742-2132/9/3/247

Zong Z, Yin X, Wu G. Direct inversion for a fluid factor and its application in heterogeneous reservoirs. Geophy Prosp 2013; 61(5): 998-1005. http://dx.doi.org/10.1111/1365-2478.12038

Zong Z, Yin X, Wu G. Elastic impedance parameterization and inversion with Young’s modulus and Poisson’s ratio. Geophysics 2013; 78(6): N35-N42. http://dx.doi.org/10.1190/geo2012-0529.1

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2015 Zhaoyun Zong, Xingyao Yin, Guochen Wu

Downloads

Download data is not yet available.