Development of an ANN-Driven Empirical Equation for Real-Time Prediction of Natural Gas Flow through Surface Well Chokes
Abstract - 0
PDF

Keywords

Flow control
Surface choke
Natural gas flow
Artificial neural networks

Abstract

To maximize production efficiency, natural gas flow via surface well chokes must be optimized. The nonlinear character of this flow frequently causes problems for conventional empirical correlations and mechanistic models. To accurately forecast gas flow rates using field data, this study develops an Artificial Neural Network (ANN) model that considers temperature, gas gravity, choke size, and pressures. The main innovation is that the optimized network is used to derive an exact, closed-form empirical equation, going beyond the typical "black-box" use of ANN. This equation enables the estimation of flow rate in real-time without requiring the execution of the ANN model, providing engineers with a valuable tool at present. The 5-neuron optimized ANN demonstrated remarkable accuracy, with training and testing average absolute percentage errors (AAPE) below 2% and a correlation coefficient (R) over 0.99. When tested on unknown data, the resultant equation performed well (R=0.999, AAPE=2.78%), outperforming conventional techniques in terms of generalization and predictive power. By connecting data-driven analytics with field operational realities for well management, this research represents a significant leap forward.

https://doi.org/10.15377/2409-787X.2025.12.5
PDF

References

Nejatian I, Kanani M, Arabloo M, Bahadori A, Zendehboudi S. Prediction of natural gas flow through chokes using support vector machine algorithm. J Nat Gas Sci Eng. 2014; 18: 155-63. https://doi.org/10.1016/j.jngse.2014.02.008

Wu J, Yang X, Di Y, Li P, Zhang J, Zhang D. Numerical simulation of choke size optimization in a shale gas well. Geofluids. 2022; 2022: 1-12. https://doi.org/10.1155/2022/2197001

Naseri S, Tatar A, Shokrollahi A. Development of an accurate method to prognosticate choke flow coefficients for natural gas flow through nozzle and orifice type chokes. Flow Meas Instrum. 2016; 48: 1-7. https://doi.org/10.1016/j.flowmeasinst.2015.12.003

Guo L, Wang Y, Xu X, Gao H, Yang H, Han G. Study on the erosion of choke valves in high-pressure, high-temperature gas wells. Processes. 2022; 10(10): 2139. https://doi.org/10.3390/pr10102139

Al-Attar H. Performance of wellhead chokes during sub-critical flow of gas condensates. J Pet Sci Eng. 2008; 60(3-4): 205-12. https://doi.org/10.1016/j.petrol.2007.08.001

Naseri S, Tatar A, Shokrollahi A. Development of an accurate method to prognosticate choke flow coefficients for natural gas flow through nozzle and orifice type chokes. Flow Meas Instrum. 2016; 48: 1-7. https://doi.org/10.1016/j.flowmeasinst.2015.12.003

Elhaj MA, Anifowose F, Abdulraheem A. Single gas flow prediction through chokes using artificial intelligence techniques. In: SPE Saudi Arabia Section Annual Technical Symposium & Exhibition; 21‑23 April 2015; Al‑Khobar, Saudi Arabia. Society of Petroleum Engineers; 2015. https://doi.org/10.2118/177991-MS

Choubineh A, Ghorbani H, Wood DA, Robab Moosavi S, Khalafi E, Sadatshojaei E. Improved predictions of wellhead choke liquid critical-flow rates: Modelling based on hybrid neural network training learning based optimization. Fuel. 2017; 207: 547-60. https://doi.org/10.1016/j.fuel.2017.06.131

Ghorbani H, Moghadasi J, Wood DA. Prediction of gas flow rates from gas condensate reservoirs through wellhead chokes using a firefly optimization algorithm. J Nat Gas Sci Eng. 2017; 45: 256-71. https://doi.org/10.1016/j.jngse.2017.04.034

Gidado AO, Adeniyi AT, Olusola B, Giwa A. Sensitivity analysis of choke size selections on reservoir pressure drawdown using Prosper modelling for reservoir management. In: The SPE Nigeria Annual International Conference and Exhibition; 2023; Lagos, Nigeria. Society of Petroleum Engineers; 2023. https://doi.org/10.2118/217146-MS

Ahmed A, Mahmoud AA, Elhaj MA, Elkatatny S. Artificial neural networks for optimization of natural gas flow through surface well chokes. In: Society of Petroleum Engineers ADIPEC 2024; 4 Nov 2024; Abu Dhabi, UAE. Society of Petroleum Engineers; 2024. https://doi.org/10.2118/222586-MS (cited 2025 Nov 1).

Nasriani HR, Khan K, Graham T, Ndlovu S, Nasriani M, Mai J, et al. An investigation into sub-critical choke flow performance in high rate gas condensate wells. Energies (Basel). 2019; 12(20): 3992. https://doi.org/10.3390/en12203992

Seidi S, Sayahi T. A new correlation for prediction of sub-critical two-phase flow pressure drop through large-sized wellhead chokes. J Nat Gas Sci Eng. 2015; 26: 264-78. https://doi.org/10.1016/j.jngse.2015.06.025

Khorzoughi MB, Beiranvand MS, Rasaei MR. Investigation of a new multiphase flow choke correlation by linear and non-linear optimization methods and Monte Carlo sampling. J Pet Explor Prod Technol. 2013; 3(4): 279-85. https://doi.org/10.1007/s13202-013-0067-9

Sadri M, Mahdiyar H, Mohsenipour A. A compositional thermal multiphase wellbore model for use in non-isothermal gas lifting. J Energy Resour Technol. 2019; 141(11): 1-12. https://doi.org/10.1115/1.4043653

Nascimento JCS, Santos A dos, Pico Ortiz CE, Pires AP. A fully implicit EOS based compositional two-phase transient flow simulator in wellbores. J Pet Sci Eng. 2021; 205: 108923. https://doi.org/10.1016/j.petrol.2021.108923

Choubineh A, Ghorbani H, Wood DA, Robab Moosavi S, Khalafi E, Sadatshojaei E. Improved predictions of wellhead choke liquid critical-flow rates: Modelling based on hybrid neural network training learning based optimization. Fuel. 2017; 207: 547-60. https://doi.org/10.1016/j.fuel.2017.06.131

Al‑Khalifa MA, Al‑Marhoun MA. Application of neural network for two‑phase flow through chokes. In: The SPE Saudi Arabia Section Technical Symposium & Exhibition; May 2013; Al‑Khobar, Saudi Arabia. Society of Petroleum Engineers; 2013. https://doi.org/10.2118/169597‑MS

Khamis M, Elhaj M, Abdulraheem A. Optimization of choke size for two-phase flow using artificial intelligence. J Pet Explor Prod Technol. 2020; 10(2): 487-500. https://doi.org/10.1007/s13202-019-0734-6

Siddig O, Abdulhamid Mahmoud A, Elkatatny S, Soupios P. Utilization of artificial neural network in predicting the total organic carbon in devonian shale using the conventional well logs and the spectral gamma ray. Comput Intell Neurosci. 2021; 2021: 1-12. https://doi.org/10.1155/2021/2486046

Mahmoud AA, Elkatatny S, Ali A, Moussa T. Estimation of static young's modulus for sandstone formation using artificial neural networks. Energies (Basel). 2019; 12(11): 2125. https://doi.org/10.3390/en12112125

Al-AbdulJabbar A, Mahmoud AA, Elkatatny S. Artificial neural network model for real-time prediction of the rate of penetration while horizontally drilling natural gas-bearing sandstone formations. Arab J Geosci. 2021; 14(2): Article no. 117. https://doi.org/10.1007/s12517-021-06457-0

Al-AbdulJabbar A, Mahmoud AA, Elkatatny S, Abughaban M. A novel artificial neural network-based correlation for evaluating the rate of penetration in a natural gas bearing sandstone formation: a case study in a middle east oil field. J Sens. 2022; 2022: 1-14. https://doi.org/10.1155/2022/9444076

Hassoun MH, Intrator N, McKay S, Christian W. Fundamentals of artificial neural networks. Comput Phys. 1996; 10(2): 137-137. https://doi.org/10.1063/1.4822376

Pircher T, Pircher B, Schlücker E, Feigenspan A. The structure dilemma in biological and artificial neural networks. Sci Rep. 2021; 11(1): 5621. https://doi.org/10.1038/s41598-021-84813-6

Alaloul SW, Qureshi HA. Data Processing Using Artificial Neural Networks. In: Harkut D, Ed. Dynamic Data Assimilation - Beating the Uncertainties. IntechOpen; 2020. https://doi.org/10.5772/INTECHOPEN.92194

Qamar R, Ali Zardari B. Artificial neural networks: an overview. Mesopotamian J Comput Sci. 2023; 2023: 130-9. https://doi.org/10.58496/MJCSC/2023/015

Ismail A, Ewida HF, Nazeri S, Al-Ibiary MG, Zollo A. Gas channels and chimneys prediction using artificial neural networks and multi-seismic attributes, offshore West Nile Delta, Egypt. J Pet Sci Eng. 2022; 208: 109349. https://doi.org/10.1016/j.petrol.2021.109349

Li S, Liu B, Ren Y, Chen Y, Yang S, Wang Y, et al. Deep-learning inversion of seismic data. IEEE Trans Geosci Remote Sens. 2020; 58(3): 2135-49. https://doi.org/10.1109/TGRS.2019.2953473

Peters B, Haber E, Granek J. Neural networks for geophysicists and their application to seismic data interpretation. The Leading Edge. 2019; 38(7): 534-40. https://doi.org/10.1190/tle38070534.1

Al-AbdulJabbar A, Mahmoud AA, Elkatatny S. Artificial neural network model for real-time prediction of the rate of penetration while horizontally drilling natural gas-bearing sandstone formations. Arab J Geosci. 2021; 14(2): 117. https://doi.org/10.1007/s12517-021-06457-0

Al-AbdulJabbar A, Mahmoud AA, Elkatatny S, Abughaban M. Artificial neural networks-based correlation for evaluating the rate of penetration in a vertical carbonate formation for an entire oil field. J Pet Sci Eng. 2022; 208: 109693. https://doi.org/10.1016/j.petrol.2021.109693

Alkinani HH, Al-Hameedi ATT, Dunn-Norman S, Lian D. Application of artificial neural networks in the drilling processes: Can equivalent circulation density be estimated prior to drilling? Egypt J Pet. 2020; 29(2): 121-6. https://doi.org/10.1016/j.ejpe.2019.12.003

Ashena R, Rabiei M, Rasouli V, Mohammadi AH, Mishani S. Drilling parameters optimization using an innovative artificial intelligence model. J Energy Resour Technol. 2021; 143(5): 052110. https://doi.org/10.1115/1.4050050

Mahmoud AA, Elkatatny S, Ali A, Moussa T. Estimation of static young's modulus for sandstone formation using artificial neural networks. Energies (Basel). 2019; 12(11): 2125. https://doi.org/10.3390/en12112125

Mahmoud AA, Gamal H, Elkatatny S, Alsaihati A. Estimating the total organic carbon for unconventional shale resources during the drilling process: a machine learning approach. J Energy Resour Technol. 2022; 144(4): 043004. https://doi.org/10.1115/1.4051737

Ahmed AA, Elkatatny S, Abdulraheem A, Mahmoud M. Application of artificial intelligence techniques in estimating oil recovery factor for water derived sandy reservoirs. In: SPE Kuwait Oil & Gas Show and Conference; Oct 2017; Kuwait City, Kuwait. Society of Petroleum Engineers; 2017. Paper No. SPE-187621-MS. https://doi.org/10.2118/187621-MS

Saikia P, Baruah RD, Singh SK, Chaudhuri PK. Artificial neural networks in the domain of reservoir characterization: A review from shallow to deep models. Comput Geosci. 2020; 135: 104357. https://doi.org/10.1016/j.cageo.2019.104357

Aminian K, Ameri S. Application of artificial neural networks for reservoir characterization with limited data. J Pet Sci Eng. 2005; 49(3-4): 212-22. https://doi.org/10.1016/j.petrol.2005.05.007

Mohaghegh S, Arefi R, Ameri S, Aminiand K, Nutter R. Petroleum reservoir characterization with the aid of artificial neural networks. J Pet Sci Eng. 1996; 16(4): 263-74. https://doi.org/10.1016/S0920-4105(96)00028-9

Elkatatny S, Al-AbdulJabbar A, Mahmoud AA. New robust model to estimate formation tops in real time using artificial neural networks (ANN). Petrophysics. 2019; 60(6): 825-37. https://doi.org/10.30632/PJV60N6-2019a7

Vo Thanh H, Sugai Y, Sasaki K. Application of artificial neural network for predicting the performance of CO2 enhanced oil recovery and storage in residual oil zones. Sci Rep. 2020; 10(1): 18204. https://doi.org/10.1038/s41598-020-73931-2

Cheraghi Y, Kord S, Mashayekhizadeh V. Application of machine learning techniques for selecting the most suitable enhanced oil recovery method; challenges and opportunities. J Pet Sci Eng. 2021; 205: 108761. https://doi.org/10.1016/j.petrol.2021.108761

Fujii H, Shirai H, Doi M, Sugai K. Optimization of oil production schemes in actual oil fields with application of artificial neural networks on reservoir simulation. J Japan Assoc Pet Technol. 2009; 74(2): 175-84. https://doi.org/10.3720/japt.74.175

Ansari A, Heras M, Nones J, Mohammadpoor M, Torabi F. Predicting the performance of steam assisted gravity drainage (SAGD) method utilizing artificial neural network (ANN). Petroleum. 2020; 6(4): 368-74. https://doi.org/10.1016/j.petlm.2019.04.001

Elhaj MA, Enamul Hossain M, Imtiaz SA, Naterer GF. Hysteresis of wettability in porous media: a review. J Pet Explor Prod Technol. 2020; 10(5): 1897-905. https://doi.org/10.1007/s13202-020-00872-x

Choubineh A, Ghorbani H, Wood DA, Robab Moosavi S, Khalafi E, Sadatshojaei E. Improved predictions of wellhead choke liquid critical-flow rates: Modelling based on hybrid neural network training learning based optimization. Fuel. 2017; 207: 547-60. https://doi.org/10.1016/j.fuel.2017.06.131

ZareNezhad B, Aminian A. An artificial neural network model for design of wellhead chokes in gas condensate production fields. Pet Sci Technol. 2011; 29(6): 579-87. https://doi.org/10.1080/10916460903551065

Alghamdi A, Ayoola O, Mulhem K, Otaibi M, Abdulraheem A. Real-time prediction of choke health using production data integrated with AI. In: Offshore Technology Conference; Aug 2021; Virtual and Houston, Texas, USA. Offshore Technology Conference; 2021. Paper No. OTC-30981-MS. https://doi.org/10.4043/30981-MS

Dabiri MS, Hadavimoghaddam F, Ashoorian S, Schaffie M, Hemmati-Sarapardeh A. Modeling liquid rate through wellhead chokes using machine learning techniques. Sci Rep. 2024; 14(1): 1-19. https://doi.org/10.1038/s41598-024-54010-2

Wang Q, Hussein MA, Kanabar B, Yadav A, Rajiv A, Shankhyan A, et al. Precise prediction of choke oil rate in critical flow condition via surface data. J Pet Explor Prod Technol. 2025; 15(7): 1-18. https://doi.org/10.1007/s13202-025-02013-8

Kaleem W, Tewari S, Fogat M, Martyushev DA. A hybrid machine learning approach based study of production forecasting and factors influencing the multiphase flow through surface chokes. Petroleum. 2024; 10(2): 354-71. https://doi.org/10.1016/j.petlm.2023.06.001

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Ashraf Ahmed, Ahmed A. Mahmoud, Murtada A. Elhaj, Salaheldin Elkatatny

Downloads

Download data is not yet available.