Abstract
To maximize production efficiency, natural gas flow via surface well chokes must be optimized. The nonlinear character of this flow frequently causes problems for conventional empirical correlations and mechanistic models. To accurately forecast gas flow rates using field data, this study develops an Artificial Neural Network (ANN) model that considers temperature, gas gravity, choke size, and pressures. The main innovation is that the optimized network is used to derive an exact, closed-form empirical equation, going beyond the typical "black-box" use of ANN. This equation enables the estimation of flow rate in real-time without requiring the execution of the ANN model, providing engineers with a valuable tool at present. The 5-neuron optimized ANN demonstrated remarkable accuracy, with training and testing average absolute percentage errors (AAPE) below 2% and a correlation coefficient (R) over 0.99. When tested on unknown data, the resultant equation performed well (R=0.999, AAPE=2.78%), outperforming conventional techniques in terms of generalization and predictive power. By connecting data-driven analytics with field operational realities for well management, this research represents a significant leap forward.
References
Nejatian I, Kanani M, Arabloo M, Bahadori A, Zendehboudi S. Prediction of natural gas flow through chokes using support vector machine algorithm. J Nat Gas Sci Eng. 2014; 18: 155-63. https://doi.org/10.1016/j.jngse.2014.02.008
Wu J, Yang X, Di Y, Li P, Zhang J, Zhang D. Numerical simulation of choke size optimization in a shale gas well. Geofluids. 2022; 2022: 1-12. https://doi.org/10.1155/2022/2197001
Naseri S, Tatar A, Shokrollahi A. Development of an accurate method to prognosticate choke flow coefficients for natural gas flow through nozzle and orifice type chokes. Flow Meas Instrum. 2016; 48: 1-7. https://doi.org/10.1016/j.flowmeasinst.2015.12.003
Guo L, Wang Y, Xu X, Gao H, Yang H, Han G. Study on the erosion of choke valves in high-pressure, high-temperature gas wells. Processes. 2022; 10(10): 2139. https://doi.org/10.3390/pr10102139
Al-Attar H. Performance of wellhead chokes during sub-critical flow of gas condensates. J Pet Sci Eng. 2008; 60(3-4): 205-12. https://doi.org/10.1016/j.petrol.2007.08.001
Naseri S, Tatar A, Shokrollahi A. Development of an accurate method to prognosticate choke flow coefficients for natural gas flow through nozzle and orifice type chokes. Flow Meas Instrum. 2016; 48: 1-7. https://doi.org/10.1016/j.flowmeasinst.2015.12.003
Elhaj MA, Anifowose F, Abdulraheem A. Single gas flow prediction through chokes using artificial intelligence techniques. In: SPE Saudi Arabia Section Annual Technical Symposium & Exhibition; 21‑23 April 2015; Al‑Khobar, Saudi Arabia. Society of Petroleum Engineers; 2015. https://doi.org/10.2118/177991-MS
Choubineh A, Ghorbani H, Wood DA, Robab Moosavi S, Khalafi E, Sadatshojaei E. Improved predictions of wellhead choke liquid critical-flow rates: Modelling based on hybrid neural network training learning based optimization. Fuel. 2017; 207: 547-60. https://doi.org/10.1016/j.fuel.2017.06.131
Ghorbani H, Moghadasi J, Wood DA. Prediction of gas flow rates from gas condensate reservoirs through wellhead chokes using a firefly optimization algorithm. J Nat Gas Sci Eng. 2017; 45: 256-71. https://doi.org/10.1016/j.jngse.2017.04.034
Gidado AO, Adeniyi AT, Olusola B, Giwa A. Sensitivity analysis of choke size selections on reservoir pressure drawdown using Prosper modelling for reservoir management. In: The SPE Nigeria Annual International Conference and Exhibition; 2023; Lagos, Nigeria. Society of Petroleum Engineers; 2023. https://doi.org/10.2118/217146-MS
Ahmed A, Mahmoud AA, Elhaj MA, Elkatatny S. Artificial neural networks for optimization of natural gas flow through surface well chokes. In: Society of Petroleum Engineers ADIPEC 2024; 4 Nov 2024; Abu Dhabi, UAE. Society of Petroleum Engineers; 2024. https://doi.org/10.2118/222586-MS (cited 2025 Nov 1).
Nasriani HR, Khan K, Graham T, Ndlovu S, Nasriani M, Mai J, et al. An investigation into sub-critical choke flow performance in high rate gas condensate wells. Energies (Basel). 2019; 12(20): 3992. https://doi.org/10.3390/en12203992
Seidi S, Sayahi T. A new correlation for prediction of sub-critical two-phase flow pressure drop through large-sized wellhead chokes. J Nat Gas Sci Eng. 2015; 26: 264-78. https://doi.org/10.1016/j.jngse.2015.06.025
Khorzoughi MB, Beiranvand MS, Rasaei MR. Investigation of a new multiphase flow choke correlation by linear and non-linear optimization methods and Monte Carlo sampling. J Pet Explor Prod Technol. 2013; 3(4): 279-85. https://doi.org/10.1007/s13202-013-0067-9
Sadri M, Mahdiyar H, Mohsenipour A. A compositional thermal multiphase wellbore model for use in non-isothermal gas lifting. J Energy Resour Technol. 2019; 141(11): 1-12. https://doi.org/10.1115/1.4043653
Nascimento JCS, Santos A dos, Pico Ortiz CE, Pires AP. A fully implicit EOS based compositional two-phase transient flow simulator in wellbores. J Pet Sci Eng. 2021; 205: 108923. https://doi.org/10.1016/j.petrol.2021.108923
Choubineh A, Ghorbani H, Wood DA, Robab Moosavi S, Khalafi E, Sadatshojaei E. Improved predictions of wellhead choke liquid critical-flow rates: Modelling based on hybrid neural network training learning based optimization. Fuel. 2017; 207: 547-60. https://doi.org/10.1016/j.fuel.2017.06.131
Al‑Khalifa MA, Al‑Marhoun MA. Application of neural network for two‑phase flow through chokes. In: The SPE Saudi Arabia Section Technical Symposium & Exhibition; May 2013; Al‑Khobar, Saudi Arabia. Society of Petroleum Engineers; 2013. https://doi.org/10.2118/169597‑MS
Khamis M, Elhaj M, Abdulraheem A. Optimization of choke size for two-phase flow using artificial intelligence. J Pet Explor Prod Technol. 2020; 10(2): 487-500. https://doi.org/10.1007/s13202-019-0734-6
Siddig O, Abdulhamid Mahmoud A, Elkatatny S, Soupios P. Utilization of artificial neural network in predicting the total organic carbon in devonian shale using the conventional well logs and the spectral gamma ray. Comput Intell Neurosci. 2021; 2021: 1-12. https://doi.org/10.1155/2021/2486046
Mahmoud AA, Elkatatny S, Ali A, Moussa T. Estimation of static young's modulus for sandstone formation using artificial neural networks. Energies (Basel). 2019; 12(11): 2125. https://doi.org/10.3390/en12112125
Al-AbdulJabbar A, Mahmoud AA, Elkatatny S. Artificial neural network model for real-time prediction of the rate of penetration while horizontally drilling natural gas-bearing sandstone formations. Arab J Geosci. 2021; 14(2): Article no. 117. https://doi.org/10.1007/s12517-021-06457-0
Al-AbdulJabbar A, Mahmoud AA, Elkatatny S, Abughaban M. A novel artificial neural network-based correlation for evaluating the rate of penetration in a natural gas bearing sandstone formation: a case study in a middle east oil field. J Sens. 2022; 2022: 1-14. https://doi.org/10.1155/2022/9444076
Hassoun MH, Intrator N, McKay S, Christian W. Fundamentals of artificial neural networks. Comput Phys. 1996; 10(2): 137-137. https://doi.org/10.1063/1.4822376
Pircher T, Pircher B, Schlücker E, Feigenspan A. The structure dilemma in biological and artificial neural networks. Sci Rep. 2021; 11(1): 5621. https://doi.org/10.1038/s41598-021-84813-6
Alaloul SW, Qureshi HA. Data Processing Using Artificial Neural Networks. In: Harkut D, Ed. Dynamic Data Assimilation - Beating the Uncertainties. IntechOpen; 2020. https://doi.org/10.5772/INTECHOPEN.92194
Qamar R, Ali Zardari B. Artificial neural networks: an overview. Mesopotamian J Comput Sci. 2023; 2023: 130-9. https://doi.org/10.58496/MJCSC/2023/015
Ismail A, Ewida HF, Nazeri S, Al-Ibiary MG, Zollo A. Gas channels and chimneys prediction using artificial neural networks and multi-seismic attributes, offshore West Nile Delta, Egypt. J Pet Sci Eng. 2022; 208: 109349. https://doi.org/10.1016/j.petrol.2021.109349
Li S, Liu B, Ren Y, Chen Y, Yang S, Wang Y, et al. Deep-learning inversion of seismic data. IEEE Trans Geosci Remote Sens. 2020; 58(3): 2135-49. https://doi.org/10.1109/TGRS.2019.2953473
Peters B, Haber E, Granek J. Neural networks for geophysicists and their application to seismic data interpretation. The Leading Edge. 2019; 38(7): 534-40. https://doi.org/10.1190/tle38070534.1
Al-AbdulJabbar A, Mahmoud AA, Elkatatny S. Artificial neural network model for real-time prediction of the rate of penetration while horizontally drilling natural gas-bearing sandstone formations. Arab J Geosci. 2021; 14(2): 117. https://doi.org/10.1007/s12517-021-06457-0
Al-AbdulJabbar A, Mahmoud AA, Elkatatny S, Abughaban M. Artificial neural networks-based correlation for evaluating the rate of penetration in a vertical carbonate formation for an entire oil field. J Pet Sci Eng. 2022; 208: 109693. https://doi.org/10.1016/j.petrol.2021.109693
Alkinani HH, Al-Hameedi ATT, Dunn-Norman S, Lian D. Application of artificial neural networks in the drilling processes: Can equivalent circulation density be estimated prior to drilling? Egypt J Pet. 2020; 29(2): 121-6. https://doi.org/10.1016/j.ejpe.2019.12.003
Ashena R, Rabiei M, Rasouli V, Mohammadi AH, Mishani S. Drilling parameters optimization using an innovative artificial intelligence model. J Energy Resour Technol. 2021; 143(5): 052110. https://doi.org/10.1115/1.4050050
Mahmoud AA, Elkatatny S, Ali A, Moussa T. Estimation of static young's modulus for sandstone formation using artificial neural networks. Energies (Basel). 2019; 12(11): 2125. https://doi.org/10.3390/en12112125
Mahmoud AA, Gamal H, Elkatatny S, Alsaihati A. Estimating the total organic carbon for unconventional shale resources during the drilling process: a machine learning approach. J Energy Resour Technol. 2022; 144(4): 043004. https://doi.org/10.1115/1.4051737
Ahmed AA, Elkatatny S, Abdulraheem A, Mahmoud M. Application of artificial intelligence techniques in estimating oil recovery factor for water derived sandy reservoirs. In: SPE Kuwait Oil & Gas Show and Conference; Oct 2017; Kuwait City, Kuwait. Society of Petroleum Engineers; 2017. Paper No. SPE-187621-MS. https://doi.org/10.2118/187621-MS
Saikia P, Baruah RD, Singh SK, Chaudhuri PK. Artificial neural networks in the domain of reservoir characterization: A review from shallow to deep models. Comput Geosci. 2020; 135: 104357. https://doi.org/10.1016/j.cageo.2019.104357
Aminian K, Ameri S. Application of artificial neural networks for reservoir characterization with limited data. J Pet Sci Eng. 2005; 49(3-4): 212-22. https://doi.org/10.1016/j.petrol.2005.05.007
Mohaghegh S, Arefi R, Ameri S, Aminiand K, Nutter R. Petroleum reservoir characterization with the aid of artificial neural networks. J Pet Sci Eng. 1996; 16(4): 263-74. https://doi.org/10.1016/S0920-4105(96)00028-9
Elkatatny S, Al-AbdulJabbar A, Mahmoud AA. New robust model to estimate formation tops in real time using artificial neural networks (ANN). Petrophysics. 2019; 60(6): 825-37. https://doi.org/10.30632/PJV60N6-2019a7
Vo Thanh H, Sugai Y, Sasaki K. Application of artificial neural network for predicting the performance of CO2 enhanced oil recovery and storage in residual oil zones. Sci Rep. 2020; 10(1): 18204. https://doi.org/10.1038/s41598-020-73931-2
Cheraghi Y, Kord S, Mashayekhizadeh V. Application of machine learning techniques for selecting the most suitable enhanced oil recovery method; challenges and opportunities. J Pet Sci Eng. 2021; 205: 108761. https://doi.org/10.1016/j.petrol.2021.108761
Fujii H, Shirai H, Doi M, Sugai K. Optimization of oil production schemes in actual oil fields with application of artificial neural networks on reservoir simulation. J Japan Assoc Pet Technol. 2009; 74(2): 175-84. https://doi.org/10.3720/japt.74.175
Ansari A, Heras M, Nones J, Mohammadpoor M, Torabi F. Predicting the performance of steam assisted gravity drainage (SAGD) method utilizing artificial neural network (ANN). Petroleum. 2020; 6(4): 368-74. https://doi.org/10.1016/j.petlm.2019.04.001
Elhaj MA, Enamul Hossain M, Imtiaz SA, Naterer GF. Hysteresis of wettability in porous media: a review. J Pet Explor Prod Technol. 2020; 10(5): 1897-905. https://doi.org/10.1007/s13202-020-00872-x
Choubineh A, Ghorbani H, Wood DA, Robab Moosavi S, Khalafi E, Sadatshojaei E. Improved predictions of wellhead choke liquid critical-flow rates: Modelling based on hybrid neural network training learning based optimization. Fuel. 2017; 207: 547-60. https://doi.org/10.1016/j.fuel.2017.06.131
ZareNezhad B, Aminian A. An artificial neural network model for design of wellhead chokes in gas condensate production fields. Pet Sci Technol. 2011; 29(6): 579-87. https://doi.org/10.1080/10916460903551065
Alghamdi A, Ayoola O, Mulhem K, Otaibi M, Abdulraheem A. Real-time prediction of choke health using production data integrated with AI. In: Offshore Technology Conference; Aug 2021; Virtual and Houston, Texas, USA. Offshore Technology Conference; 2021. Paper No. OTC-30981-MS. https://doi.org/10.4043/30981-MS
Dabiri MS, Hadavimoghaddam F, Ashoorian S, Schaffie M, Hemmati-Sarapardeh A. Modeling liquid rate through wellhead chokes using machine learning techniques. Sci Rep. 2024; 14(1): 1-19. https://doi.org/10.1038/s41598-024-54010-2
Wang Q, Hussein MA, Kanabar B, Yadav A, Rajiv A, Shankhyan A, et al. Precise prediction of choke oil rate in critical flow condition via surface data. J Pet Explor Prod Technol. 2025; 15(7): 1-18. https://doi.org/10.1007/s13202-025-02013-8
Kaleem W, Tewari S, Fogat M, Martyushev DA. A hybrid machine learning approach based study of production forecasting and factors influencing the multiphase flow through surface chokes. Petroleum. 2024; 10(2): 354-71. https://doi.org/10.1016/j.petlm.2023.06.001

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 Ashraf Ahmed, Ahmed A. Mahmoud, Murtada A. Elhaj, Salaheldin Elkatatny