Empirical Mode Decomposition and a Bidirectional LSTM Architecture Used to Decode Individual Finger MI-EEG Signals
Abstract - 291


Motor Imagery (MI)
Binary Classification
Electroencephalogram (EEG)
Empirical Mode Decomposition (EMD)
Bidirectional Long Short-Term Memory (BiLSTM)

How to Cite

Mwata-Velu, T., Ruiz-Pinales, J., Avina-Cervantes, J. G., Gonzalez-Barbosa, J. J. ., & Contreras-Hernandez, J. L. . (2022). Empirical Mode Decomposition and a Bidirectional LSTM Architecture Used to Decode Individual Finger MI-EEG Signals. Journal of Advances in Applied & Computational Mathematics, 9, 32–48. https://doi.org/10.15377/2409-5761.2022.09.3


Brain-Computer Interface (BCI) paradigms based on Motor Imagery Electroencephalogram (MI-EEG) signals have been developed because the related signals can be generated voluntarily to control further applications. Researches using strong and stout limbs MI-EEG signals reported performing significant classification rates for BCI applied systems. However, MI-EEG signals produced by imagined movements of small limbs present a real classification challenge to be effectively used in BCI systems. It is due to a reduced signal level and increased noisy distorted effects. This study aims to decode individual right-hand fingers’ imagined movements for BCI applications, using MI-EEG signals from C3, Cz, P3, and Pz channels. For this purpose, the Empirical Mode Decomposition (EMD) preprocesses the non-stationary and non-linear EEG signals to finally use a Bidirectional Long Short-Term Memory (BiLSTM) to classify corresponding feature sequences. An average accuracy of 98.8 % was achieved for ring-finger movements decoding using k-fold cross-validation on a public dataset (Scientific-Data). The obtained results support that the proposed framework can be used for BCI control applications.



Saad S, Kareem DH, Jasim M. A Systematic Review of Brain-Computer Interface Based EEG. Iraqi Journal for Electrical and Electronic Engineering. 2020; 11(16):81-90. https://doi.org/10.37917/ ijeee.16.2.9.

Wen D, Jia P, Lian Q, Zhou Y, Lu C. Review of Sparse Representation-Based Classification Methods on EEG Signal Processing for Epilepsy Detection, Brain-Computer Interface and Cognitive Impairment. Frontiers in Aging Neuroscience. 2016; 8: 172. https://doi.org/10.3389/ fnagi.2016.00172.

Yu Y, Zhou Z, Yin E, Jiang J, Tang J, Liu Y, et al. Toward brain-actuated car applications: Self-paced control with a motor imagery-based brain-computer interface. Computers in Biology and Medicine. 2016; 77: 148-55. https://doi.org/10.1016/j.compbiomed.2016.08.010.

Bensch M, Karim A, Mellinger J, Hinterberger T, Tangermann M, Bogdan M, et al. Nessi: An EEG-Controlled Web Browser for Severely Paralyzed Patients. Computational Intelligence and Neuroscience. 2007; 02: 71863. https://doi.org/10.1155/2007/71863.

Jeunet C, Lotte F, Batail JM, Philip P, Micoulaud Franchi JA. Using Recent BCI Literature to Deepen our Understanding of Clinical Neurofeedback: A Short Review. Neuroscience. 2018; 378: 225-33. Neurofeedback and Functional Enhancement: Mechanisms, Methodology, Behavioral and Clinical Applications. https://doi.org/10.1016/j.neuroscience.2018.03.013.

Al-Aubidy KM, Abdulghani MM. Towards Intelligent Control of Electric Wheelchairs for Physically Challenged People. Smart Sensors, Measurement and Instrumentation. 2021; 39: 225-60. https: //doi.org/10.1007/978-3-030-71221-1_11.

Park D, Hoshi Y, Mahajan HP, Kim HK, Erickson Z, Rogers WA, et al. Active robot-assisted feeding with a general-purpose mobile manipulator: Design, evaluation, and lessons learned. Robotics and Autonomous Systems. 2020; 124: 103344. https://doi.org/10.1016/j.robot.2019. 103344.

Tariq M, Trivailo P, Simic M. EEG-Based BCI Control Schemes for Lower-Limb Assistive-Robots. Frontiers in Human Neuroscience. 2018; 8(12): 312. https://doi.org/10.3389/fnhum.2018.00312.

Dai M, Zheng D, Na R, Wang S, Zhang S. EEG Classification of Motor Imagery Using a Novel Deep Learning Framework. Sensors. 2019; 19(3): 551. https://doi.org/10.3390/s19030551.

Athanasiou A, Lithari C, Kalogianni K, Klados M, Bamidis P. Source Detection and Functional Connectivity of the Sensorimotor Cortex during Actual and Imaginary Limb Movement: A Preliminary Study on the Implementation of eConnectome in Motor Imagery Protocols. Advances in Human-Computer Interaction. 2012; 12: 1-10. https://doi.org/10.1155/2012/127627.

Amarasinghe K, Sivils P, Manic M. EEG feature selection for thought driven robots using evolutionary Algorithms. 2016 9th International Conference on Human System Interactions (HSI). 2016; 07: 355-61. https://doi.org/10.1109/HSI.2016.7529657.

Qiu Z, Jin J, Lam HK, Zhang Y, Wang X, Cichocki A. Improved SFFS method for channel selection in motor imagery based BCI. Neurocomputing. 2016; 207: 519-27. https://doi.org/10. 1016/j.neucom.2016.05.035.

Bhatti MH, Khan J, Khan MUG, Iqbal R, Aloqaily M, Jararweh Y, et al. Soft Computing-Based EEG Classification by Optimal Feature Selection and Neural Networks. IEEE Transactions on Industrial Informatics. 2019; 15(10): 5747-54. https://doi.org/10.1109/TII.2019.2925624.

Sweeney-Reed CM, Nasuto SJ, Vieira MF, Andrade AO. Empirical Mode Decomposition and its Extensions Applied to EEG Analysis: A Review. Advances in Data Science and Adaptive Analysis. 2018; 10(02): 1840001. https://doi.org/10.1142/S2424922X18400016. 13

Wang Y, Zhang Z, Li Y, Gao L, Gao X, Yang F. BCI competition 2003-data set IV: an algorithm based on CSSD and FDA for classifying single-trial EEG. Biomedical Engineering, IEEE Transactions on. 2004; 51: 1081 1086. https://doi.org/10.1109/TBME.2004.826697.

Ines H, Yacoub S, Noureddine E. EEG classification using support vector machine. 2013 10th International Multi-Conference on Systems, Signals and Devices, SSD 2013. 2013; 03: 1-4. https: //doi.org/10.1109/SSD.2013.6564011.

Fu R, Tian Y, Bao T, Meng Z, Shi P. Improvement Motor Imagery EEG Classification Based on Regularized Linear Discriminant Analysis. Journal of Medical Systems. 2019; 43: 49-53. https: //doi.org/10.1007/s10916-019-1270-0.

Kumar M G, Ang K, So R. Reject option to reduce false prediction rates for EEG-motor imagery based BCI. Conference proceedings: Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2017; 2017: 2964-7. https://doi.org/10.1109/EMBC.2017.8037479.

Dobias M, St’Astny J. Movement EEG classification using parallel Hidden Markov Models. In: International Conference on Applied Electronics. vol. 2016-September; 2016; p. 65-8. https://doi. org/10.1109/AE.2016.7577243.

Wijaya A, Adji TB, Setiawan NA. Narrow window feature extraction for EEG-motor imagery classification using k-NN and voting scheme. International Conference on Electrical Engineering, Computer Science and Informatics (EECSI). 2018; 2018-October: 167-72. https://doi.org/10.1109/ EECSI.2018.8752894.

Miao M, Zeng H, Wang A, Zhao F, Liu F. Index finger motor imagery EEG pattern recognition in BCI applications using dictionary cleaned sparse representation-based classification for healthy people. Review of Scientific Instruments. 2017; 88(9): https://doi.org/10.1063/1.5001896.

Shajil N, Mohan S, Srinivasan P, Arivudaiyanambi J, Arasappan Murrugesan A. Multiclass Classification of Spatially Filtered Motor Imagery EEG Signals Using Convolutional Neural Network for BCI Based Applications. Journal of Medical and Biological Engineering. 2020; 40(5): 663-72. https://doi.org/10.1007/s40846-020-00538-3.

Xiao D. Comparison of Three Motor Imagery EEG Signal Processing Methods. In: Advances in Intelligent and Soft Computing. 2011; 129: p. 503-8. https://doi.org/10.1007/ 978-3-642-25986-9_79.

Liao K, Xiao R, Gonzalez J, Ding L. Decoding individual finger movements from one hand using human EEG signals. PLoS ONE. 2014; 9(1): https://doi.org/10.1371/journal.pone.0085192.

Kaya M, Binli M, Ozbay E, Yanar H, Mishchenko Y. A large electroencephalographic motor imagery dataset for electroencephalographic brain computer interfaces. Scientific Data. 2018; 5: 1-16. https://doi.org/10.1038/sdata.2018.211.

Anam K, Bukhori S, Hanggara FS, Pratama M. Subject-independent Classification on Brain-Computer Interface using Autonomous Deep Learning for finger movement recognition. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS. 2020; 2020-July: 447-50. https://doi.org/10.1109/EMBC44109.2020. 9175718.

Quandt F, Reichert C, Hinrichs H, Heinze HJ, Knight RT, Rieger JW. Single trial discrimination of individual finger movements on one hand: A combined MEG and EEG study. NeuroImage. 2012; 59(4): 3316-24. https://doi.org/10.1016/j.neuroimage.2011.11.053.

Rezazadeh Sereshkeh A, Trott R, Bricout A, Chau T. EEG Classification of Covert Speech Using Regularized Neural Networks. IEEE/ACM Transactions on Audio Speech and Language Processing. 2017; 25(12): 2292-300. https://doi.org/10.1109/TASLP.2017.2758164.

Zhang K, Robinson N, Lee SW, Guan C. Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network. Neural Networks. 2021; 136: 1-10. https: //doi.org/10.1016/j.neunet.2020.12.013.

Zheng X, Chen W. An Attention-based Bi-LSTM Method for Visual Object Classification via EEG. Biomedical Signal Processing and Control. 2021; 63. https://doi.org/10.1016/j.bspc.2020.102174. 14

Ha K, Jeong J. Temporal Pyramid Pooling for Decoding Motor-Imagery EEG Signals. IEEE Access. 2020; https://doi.org/10.1109/ACCESS.2020.3047678.

Yang J, Huang X, Wu H, Yang X. EEG-based emotion classification based on Bidirectional Long Short-Term Memory Network. Procedia Computer Science. 2020; 174: 491-504. 2019 International Conference on Identification, Information and Knowledge in the Internet of Things. https://www. sciencedirect.com/science/article/pii/S1877050920316379.

Lotze M, Montoya P, Erb M, Hülsmann E, Flor H, Klose U, et al. Activation of cortical and cerebellar motor areas during executed and imagined hand movements: An fMRI study. Journal of Cognitive Neuroscience. 1999; 11(5): 491-501. https://doi.org/10.1162/089892999563553.

Mishchenko Y, Kaya M, Ozbay E, Yanar H. Developing a 3- to 6-state EEG-based brain-computer interface for a robotic manipulator control. bioRxiv. 2017; 1-15. https://doi.org/10.1101/171025.

Kurgansky A. Functional Organization of the Human Brain in the Resting State. Neuroscience and Behavioral Physiology. 2019; 49: 1135–1144. https://doi.org/10.1007/s11055-019-00850-9.

Lentka Ł, Smulko J. Analysis of effectiveness and computational complexity of trend removal methods. Zeszyty Naukowe Wydziału Elektrotechniki i Automatyki Politechniki Gdańskiej. 2016; 51(1): 111-4.

Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences. 1998; 454(1971): 903-95. https://doi.org/10.1098/rspa.1998.0193.

Huang N, Wu MLC, Long SR, Shen S, Qu WD, Gloersen P, et al. A confidence limit for the empirical mode decomposition and Hilbert spectral analysis. Proceedings of The Royal Society A: Mathematical, Physical and Engineering Sciences. 2003; 459: 2317-45. https://doi.org/10.1098/ rspa.2003.1123.

Chen Y, Zhang G, Gan S, Zhang C. Enhancing seismic reflections using empirical mode decomposition in the flattened domain. Journal of Applied Geophysics. 2015; 119: 99-105. https://doi.org/10.1016/j.jappgeo.2015.05.012.

Zhang Y, Ji X, Zhang S. An approach to EEG-based emotion recognition using combined feature extraction method. Neuroscience Letters. 2016; 633(28): 152-7. https://doi.org/10.1016/j.neulet. 2016.09.037.

Yu Y, Si X, Hu C, Zhang J. A Review of Recurrent Neural Networks: LSTM Cells and Network Architectures. Neural Computation. 2019; 31(7): 1235-70. https://doi.org/10.1162/NECO_A_ 01199.

Hochester S. The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems. 1998; 6: 107-16. https://doi.org/10.1142/S0218488598000094.

Graves A, Schmidhuber J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural networks : the official journal of the International Neural Network Society. 2005; 18(5-6): 602-10. https://doi.org/10.1016/j.neunet.2005.06.042.

Smith LN. Cyclical Learning Rates for Training Neural Networks. In: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV). IEEE; 2017; p. 464-72. https://doi. org/10.1109/WACV.2017.58.

Anam K, Nuh M, Al-Jumaily A. Comparison of EEG pattern recognition of motor imagery for finger movement classification. In: International Conference on Electrical Engineering, Computer Science and Informatics (EECSI); 2019; p. 24-7. https://doi.org/10.23919/EECSI48112.2019. 8977037.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Tat'y Mwata-Velu, Jose Ruiz-Pinales, Juan Gabriel Avina-Cervantes, Jose Joel Gonzalez-Barbosa, Jose Luis Contreras-Hernandez