W2,p-Regularity of Lp Viscosity Solutions to Fully Nonlinear Elliptic Equations with Low-Order Terms
Abstract - 374
PDF

Keywords

Recession operator
Geometric tangential analysis
Regularity of viscosity solutions
Fully nonlinear elliptic equation

How to Cite

Hao, S., Zhang, Y., & Zhang, Z. (2024). W2,p-Regularity of Lp Viscosity Solutions to Fully Nonlinear Elliptic Equations with Low-Order Terms. Journal of Advances in Applied & Computational Mathematics, 11, 84–99. https://doi.org/10.15377/2409-5761.2024.11.5

Abstract

In this paper, we consider the following fully nonlinear elliptic equation

                                                                     F(D2u, Du, x) = f(x),

where the operator F satisfies structure condition and the gradient of solution has Lploc growth rate particularly. We employ the technique from geometric tangential analysis whose basic principle is to transfer the good regularity of the recession operator to the original F by approximation methods and establish a prior local W2,p estimates for - Lp-viscosity solutions to the above equation.

Mathematics Subject classification (2010): 35B45; 35R05; 35B65.

 

https://doi.org/10.15377/2409-5761.2024.11.5
PDF

References

Caffarelli LA. Interior a priori estimates for solutions of fully non-linear equations. Ann Math. 1989; 130(1): 189-213. https://doi.org/10.2307/1971480

Escauriaza L. W^{2,n} a priori estimates for solutions to fully non-linear equations. Indiana Univ Math. 1993: 42(2): 413-23.

Coifman R, Fefferman C. Weighted norm inequalities for maximal functions and singular integrals. Studia Mathematica. 1974; 51: 241-50.

Fok Pk. Some maximum principles and continuity estimates for fully nonlinear elliptic equations of second order. Ph.D. Thesis, Santa Barbara, California: University of California; 1996.

Swiech A. W^{1,p}-interior estimates for solutions of fully nonlinear, uniformly elliptic equations. Adv Differential Equat. 1997; 2(6): 1005-27.

Li D, Zhang K. W^{2,p} interior estimates of fully nonlinear elliptic equations. Bull London Math Soc. 2015; 47(2): 301-14. https://doi.org/10.1112/blms/bdv004

Winter N. W^{2,p} and W^{1,p}-estimates at the Boundary for Solutions of Fully Nonlinear, Uniformly Elliptic Equations. Z Anal Anwend. 2009; 28(2): 129-64. https://doi.org/10.4171/ZAA/1377

Krylov NV. On the existence of solutions for fully nonlinear elliptic equations under relaxed convexity assumptions. Commun Partial Differ Equat. 2013; 38(4): 687-710. https://doi.org/10.1080/03605302.2012.741177

Krylov NV. On the existence of W^{2,p} solutions for fully nonlinear elliptic equations under either relaxed or no convexity assumptions. Commun Contemp Math. 2017; 19(06): 1750009. https://doi.org/10.1142/S0219199717500092

Caffarelli LA, Huang Q. Estimates in the generalized Campanato-John-Nirenberg spaces for fully nonlinear elliptic equations. Duke Math J. 2003; 118(1): 1-17. https://doi.org/10.1215/s0012-7094-03-11811-6

Evans LC. Classical solutions of fully nonlinear, convex, second-order elliptic equations. Commun Pure Appl Math. 1982; 35(3): 333-63.

Krylov NV. Boundedly nonhomogeneous elliptic and parabolic equations. Mathematics of the USSR-Izvestiya. 1983; 20(3): 459. 10.1070/IM1983v020n03ABEH001360

Silvestre L, Teixeira EV. Regularity estimates for fully non linear elliptic equations which are asymptotically convex. In: Nolasco de Carvalho, A., Ruf, B., Moreira dos Santos, E., Gossez, JP., Monari Soares, S., Cazenave, T. Eds., Contributions to nonlinear elliptic equations and systems. progress in nonlinear differential equations and their applications, vol 86. Birkhäuser, Cham.; 2015, pp.425-38. https://doi.org/10.1007/978-3-319-19902-3_25

Pimentel EA, Teixeira EV. Sharp Hessian integrability estimates for nonlinear elliptic equations: An asymptotic approach. Journal de Mathématiques Pures et Appliquées. 2016; 106(4): 744-67. https://doi.org/10.48550/arXiv.1510.01284

Huang Q. Regularity theory for L^n-viscosity solutions to fully nonlinear elliptic equations with asymptotical approximate convexity. In: Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire. vol. 36. Elsevier; 2019. pp. 1869-902. 10.1016/j.anihpc.2019.06.001

da Silva JV, Ricarte GC. An asymptotic treatment for non-convex fully nonlinear elliptic equations: Global Sobolev and BMO type estimates. Commun Contemp Math. 2019; 21(07): 1850053. https://doi.org/10.1142/S0219199718500530

Caffarelli LA, Cabre X. Fully nonlinear elliptic equations. vol. 43. American Mathematical Soc.;1995.

Pimentel EA. Elliptic regularity theory by approximation methods. vol. 477. Cambridge University Press; 2022.

Gilbarg D, Trudinger NS. Elliptic partial differential equations of second order. vol. 224. Springer; 1977.

Fu S. L^p solutions of fully nonlinear equations with unbounded lower order terms. Dissertation, The University of Iowa; 2020. https://doi.org/10.17077/etd.005578

Wang L. On the regularity theory of fully nonlinear parabolic equations. Thesis. New York University; 1989. https://doi.org/10.1090/S0273-0979-1990-15854-9

Crandall MG, Kocan M, S^primewiech A. L^p-theory for fully nonlinear uniformly parabolic equations: Parabolic equations. Commun Partial Differ Equat. 2000; 25(11-12): 1997-2053. https://doi.org/10.1080/03605300008821576

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Shuhan Hao, Yao Zhang, Zhenqiu Zhang

Downloads

Download data is not yet available.