Double Parametric Based Solution of Fuzzy Volterra Integral Equations with Separable Type Kernels
Abstract - 76
PDF

Keywords

Fuzzy number
Fuzzy Volterra integral equations
Laplace adomian decomposition method
Double parametric form of fuzzy numbers

How to Cite

Xavier, D., Behera, D., & Xavier, S. D. (2025). Double Parametric Based Solution of Fuzzy Volterra Integral Equations with Separable Type Kernels. Journal of Advances in Applied & Computational Mathematics, 12, 1–12. https://doi.org/10.15377/2409-5761.2025.12.1

Abstract

This paper presents a new approach for solving fuzzy Volterra integral equations with separable type kernels. Here triangular and trapezoidal fuzzy numbers are considered for the analysis. In general, the existing approaches first defuzzify the fuzzy integral equation into a crisp system of integral equations or two different crisp integral equations using the concept of fuzzy arithmetic. Then they solved them to obtain the lower and upper bounds of the fuzzy solution. However, using the proposed technique one has to solve only one crisp integral equation which is obtained by using the concept of double parametric form of fuzzy numbers. This makes the proposed approach more computationally efficient. Laplace Adomian Decomposition Method (LADM) has been implemented here to obtain the solution in double parametric form. The usefulness, and practicality of this method are demonstrated through various examples.

https://doi.org/10.15377/2409-5761.2025.12.1
PDF

References

Dubois D, Prade H. Towards fuzzy differential calculus. Part 1. Integration of fuzzy mappings. Fuzzy Sets Syst. 1982; 8: 1-17. https://doi.org/10.1016/0165-0114(82)90025-2

Friedman M, Ma M, Kandel A. Numerical methods for calculating the fuzzy. Fuzzy Sets Syst. 1996; 83: 57-62. https://doi.org/10.1016/0165-0114(95)00307-X

Friedman M, Ma M, Kandel A. On fuzzy integral equations. Fundam Inform. 1999; 37: 89-99. https://doi.org/10.3233/FI-1999-371205

Park JY, Kwan YC, Jeong JV. Existence and uniqueness theorem for a solution of fuzzy Volterra integral equations. Fuzzy Sets Syst. 1999; 105: 481-8. https://doi.org/10.1016/S0165-0114(97)00238-8

Adomian G. Stochastic systems analysis. Appl Stoch Process. 1980; 1-7. https://doi.org/10.1016/B978-0-12-044380-2.50006-1

Adomian G. A review of the decomposition method in applied mathematics. J Math Anal Appl. 1988; 135(2): 501-44. https://doi.org/10.1016/0022-247X(88)90170-9

Babolian E, Sadeghi GH, Abbasbandy S. Numerical solution of linear Fredholm fuzzy integral equations of the second kind by Adomian method. Appl Math Comput. 2005; 161: 733-44. https://doi.org/10.1016/j.amc.2003.12.071

Abbasbandy S, Babolian E, Alavi M. Numerical method for solving linear Fredholm fuzzy integral equations of the second kind. Chaos Solitons Fractals. 2007; 31: 138-46. https://doi.org/10.1016/j.chaos.2005.09.036

Behzadi S. Solving fuzzy nonlinear Volterra-Fredholm integral equations by using Homotopy analysis and Adomian decomposition methods. J Fuzzy Set Valued Anal. 2011; 2011: 1-13. https://doi.org/10.5899/2011/jfsva-00067

Salahshour S, Khezerloo M, Hajighasemi S, Khorasany M. Solving fuzzy integral equations of the second kind by fuzzy Laplace transform method. Int J Ind Math. 2012; 4(1): 21-9.

Narayanamoorthy S, Sathiyapriya SP. Homotopy perturbation method: a versatile tool to evaluate linear and nonlinear fuzzy Volterra integral equations of the second kind. SpringerPlus. 2016; 5: 387. https://doi.org/10.1186/s40064-016-2038-3

Goetschel R, Voxman W. Elementary fuzzy calculus. Fuzzy Sets Syst. 1986; 18: 31-43. https://doi.org/10.1016/0165-0114(86)90026-6

Nanda S. On integration of fuzzy mapping. Fuzzy Sets Syst. 1989; 32: 95-101. https://doi.org/10.1016/0165-0114(89)90090-0

Park JY, Kwan YC, Jeong JV. Existence of solutions of fuzzy integral equations in Banach spaces. Fuzzy Sets Syst. 1995; 72: 373-8. https://doi.org/10.1016/0165-0114(94)00296-J

Wu HC. The improper fuzzy Riemann integral and its numerical integration. Inf Sci. 1999; 111: 109-37. https://doi.org/10.1016/S0020-0255(98)00016-4

Wu HC. The fuzzy Riemann integral and its numerical integration. Fuzzy Sets Syst. 2000; 110: 1-25. https://doi.org/10.1016/S0165-0114(97)00353-9

Mosayebi Z. Numerical solution of fuzzy linear Volterra-Fredholm-Hammerstein integral equations via collocation method based on radial basis functions. J Fuzzy Set Valued Anal. 2014; 2014: 1-10. https://doi.org/10.5899/2014/jfsva-00201

Ameri M, Nezhad MJ. Numerical solution of fuzzy Volterra integral equations based on least squares approximation. ICIC Express Lett. 2017; 11: 1451-60.

Alikhani R, Bahrami F, Jabbari A. Existence of global solutions to nonlinear fuzzy Volterra integro-differential equations. Nonlinear Anal. 2012; 75: 1810-21. https://doi.org/10.1016/j.na.2011.09.021

Salahshour S, Allahviranloo T. Application of fuzzy differential transform method for solving fuzzy Volterra integral equations. Appl Math Model. 2013; 37: 1016-27. https://doi.org/10.1016/j.apm.2012.03.031

Attari H, Yazdani A. A computational method for fuzzy Volterra-Fredholm integral equations. Fuzzy Inf Eng. 2011; 2: 147-56. https://doi.org/10.1007/s12543-011-0073-x

Mahmoud P, Farshid M, Mohammad KY. Solving linear and nonlinear Abel fuzzy integral equations by fuzzy Laplace transforms. Math Inverse Probl. 2014; 1(2): 58-70.

Uddin M, Khan A. A numerical method for solving Volterra integral equations with oscillatory kernels using a transform. Numer Anal Appl. 2021; 14(4): 379-87. https://doi.org/10.1134/S1995423921040078

Khaji R, Yaseen F, Khalil RI. Solution of fuzzy Volterra integral equations using composite method. Adv Math Models Appl. 2024; 9: 93-104. https://doi.org/10.62476/amma9193

Kapoor M, Bin TN, Shah NA. Approximate analytical solution of fuzzy linear Volterra integral equation via Elzaki ADM. Fract Fract. 2023; 7: 650. https://doi.org/10.3390/fractalfract7090650

Talaei Y, Zaky M, Hendy AS. Numerically solving fuzzy Volterra integral equations with weakly singular kernels based on fractional-order spectral basis functions. 2024. https://doi.org/10.13140/RG.2.2.16851.08485

Kaufmann A, Gupta MM. Introduction to fuzzy arithmetic: theory and applications. New York: Van Nostrand Reinhold; 1985.

Zimmermann HJ. Fuzzy set theory and its application. London: Kluwer Acad Publ; 2001. https://doi.org/10.1007/978-94-010-0646-0

Ross TJ. Fuzzy logic with engineering applications. New York: John Wiley & Sons; 2004.

Chakraverty S, Tapaswini S, Behera D. Fuzzy differential equations and applications for engineers and scientists. Florida: CRC Press; 2016. https://doi.org/10.1201/9781315372853

Ullaha A, Ullaha Z, Abdeljawad T, Hammouch Z, Shah K. A hybrid method for solving fuzzy Volterra integral equations of separable type kernels. J King Saud Univ Sci. 2021; 33: 101246. https://doi.org/10.1016/j.jksus.2020.101246

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Dennis Xavier, Diptiranjan Behera, Santhi Dennis Xavier

Downloads

Download data is not yet available.