Abstract
In this paper, we analyze abstract Dirichlet problem for elliptic system set on singular corner domain. We investigate the existence and uniqueness of strict solutions to the above problem using da Prato-Grisvard theory. The study is performed in the framework of little Hölder spaces.
References
Agmon S. On the eigenfunctions and the eigenvalues. Commun Pure Appl Math. 1962; 15: 119-47. https://doi.org/10.1002/cpa.3160150203
Agmon S, Douglis A, Nirenberg L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying. Commun Pure Appl Math. 1951; 12: 623-727. https://doi.org/10.1002/cpa.3160120405
Da Prato G, Grisvard P. Sommes d'opérateurs linéaires et équations différentielles opérationnelles. J Math Pures Appl IX Ser. 1975; 54: 305-87.
Krein SG. Linear Differential Equations in Banach Space. Moscow: Nauka; 1967.
Miklavčič M. Applied Functional Analysis and Partial Differential Equations. Singapore: World Scientific; 1998. https://doi.org/10.1142/9789812796233
Visik MI, Grusin VV. On a class of higher order degenerated elliptic equations. Math USSR Sb. 1969; 8(1): 1-32. https://doi.org/10.1070/SM1969v008n01ABEH001276
Bolley C, Camus J, Pham TL. Estimation de la résolvante du problème de Dirichlet dans les espaces de Hölder. C R Acad Sci Paris Sér I. 1987; 305: 253-6.
Chaouchi B. Solvability of second-order boundary-value problems on non-smooth cylindrical domains. Electron J Differ Equ. 2013; 199: 1-7.
Chaouchi B, Kostic M. An abstract approach for the study of the Dirichlet problem for an elliptic system on a conical domain. Mat Vesn. 2021; 73(2): 131-40.
Acquistapace P, Terreni B. Characterization of Hölder and Zygmund classes as interpolation spaces. Pubbl Dip Math Univ Pisa. 1984, Report no. 61.
Lunardi A. Analytic Semigroups and Optimal Regularity in Parabolic Problems. Basel: Birkhäuser Verlag; 1995. https://doi.org/10.1007/978-3-0348-0557-5
Sinestrari E. On the abstract Cauchy problem of parabolic type in spaces of continuous functions. J Math Anal Appl. 1985; 66: 16-66. https://doi.org/10.1016/0022-247X(85)90353-1
Nicaise S. About the Lamé system in a polygonal or a polyhedral domain and a coupled problem between the Lamé system and the plate equation. II: exact controllability. Ann Sc Norm Super Pisa Cl Sci (4). 1993; 20(2): 163-91.
Nicaise S. About the Lamé system in a polygonal or a polyhedral domain and a coupled problem between the Lamé system and the plate equation. I: regularity of the solutions. Ann Sc Norm Super Pisa Cl Sci (4). 1992; 19(3): 327-61.
Chaouchi B, Labbas R, Sadallah BK. Laplace equation on a domain with a cuspidal point in little Hölder spaces. Mediterr J Math. 2013; 10: 157. https://doi.org/10.1007/s00009-012-0181-9
Chaouchi B, Kostic M. An efficient abstract method for the study of an initial boundary value problem on singular domain. Afr Mat. 2019; 30(3-4): 551-62. https://doi.org/10.1007/s13370-019-00665-4
Grisvard P. Elliptic problems in non smooth domains. Monographs and Studies in Mathematics. Vol. 24. London: Pitman; 1985.
Grisvard P. Résolvante du laplacien dans un polygone et singularités des équations élliptiques et paraboliques [Resolvent of the Laplace operator in a polygon and singular behavior of elliptic and parabolic equations]. C R Acad Sci Paris Sér I. 1985; 301(5): 181-3.
Grisvard P. Le problème de Dirichlet dans W^(1,p)(Ω). Port Math. 1986; 43(4): 393-8.
Kellogg RB, Osborn JE. A regularity result for the Stokes problem in a convex polygon. J Funct Anal. 1976; 21: 397-431. https://doi.org/10.1016/0022-1236(76)90035-5
Kondratev VA. Boundary problems for elliptic equations with conical or angular points. Trans Moscow Math Soc. 1967; 16: 227-313. English translation: Am Math Soc; 1968.
Belhamiti O, Labbas R, Lemrabet K, Medeghri A. Transmission problems in a thin layer set in the framework of the Hölder spaces: resolution and impedance concept. J Math Anal Appl. 2009; (2): 457-84. https://doi.org/10.1016/j.jmaa.2009.05.010
Bouziani F, Favini A, Labbas R, Medeghri A. Study of boundary value and transmission problems governed by a class of variable operators verifying the Labbas-Terreni non commutativity assumption. Rev Mat Complut. 2011; 24(1): 131-68. https://doi.org/10.1007/s13163-010-0033-8
Triebel H. Erzengung des nuklearen lokalkonvexen raumes C∞(Ω) durch einen elliptischen differential operatoren zweiter ordnung. Math Ann. 1968; 177: 247-64. https://doi.org/10.1007/BF01350868
Grisvard P. Espaces intermédiaires entre espaces de Sobolev avec poids. Ann Sc Norm Super Pisa. 1963; 17: 255.
Grisvard P. Identités entre espaces de traces. Math Scand. 1963; 13: 70. https://doi.org/10.7146/math.scand.a-10689
Grisvard P. Théorème de trace et applications. C R Acad Sci Paris. 1963; 256: 3226.
Grisvard P. Méthodes opérationnelles dans l'étude des problèmes aux limites. In: Séminaire Bourbaki: années 1964/65 1965/66, exposés 277-312. Société Mathématiques de France; 1966, Astérisque, no. 9, Talk no. 289, p. 1-11.
Grisvard P. Sur l'utilisation du calcul opérationnel dans l'étude des problèmes aux limites. In: Exposé au Séminaire de Mathématiques Supérieures. Montréal; 1965.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 Belkacem Chaouchi, Marko Kostic, Daniel Velinov