Abstract
In this paper we introduce a new q-Stancu-Kantorovich operators and we study some of their approximation properties. Furthermore, a Voronovskaja type theorem is also proven.References
Acu AM, Barbosu D, Sofonea DF. Note on a q-analogue of Stancu-Kantorovich operators, Miskolc Mathematical Notes (to apear).
Barbosu D. Polynomial Approximation by Means of Schurer- Stancu type operators, Ed. Univ. Nord Baia Mare 2006.
Mahmudov NI, Sabancigil P. Approximation Theorems for q- Bernstein-Kantorovich Operators. Filomat 2013; 27(4): 721- 730. http://dx.doi.org/10.2298/FIL1304721M
Muraru CV. Note on q-Bernstein-Schurer operators, Studia UBB, Mathematica 2011; Vol. LVI, Number 2: 1-11.
Muraru CV. Note on the q-Stancu-Schurer operator. Miskolc Mathematical Notes 2013; 14(1): 191-200.
Shisha O, Mond P. The degree of convergence of linear positive operators. Proc Natl Acad Sci USA 1968; 60: 1196- 1200. http://dx.doi.org/10.1073/pnas.60.4.1196
Ozarslan MA, Vedi T. q-Bernstein-Schurer-Kantrovich operators. J Inequalit Appl 2013; 2013: 444. http://dx.doi.org/10.1186/1029-242X-2013-444
Ren MY, Zeng XM. Some statistical approximation properties of Kantorovich-type q-Bernstein-Stancu. J Inequalit Appl 2014; 2014: 10. http://dx.doi.org/10.1186/1029-242X-2014-10
Ren MY, Zeng XM, On statistical approximation properties of modified q-Bernstein-Schurer operators. Bull Korean Math Soc 2013; 50(4): 1145-1156.
Volkov VI. On the convergence of sequences of linear positive operators in the space of continuous functions of two variables (in Russian) Dokl Akad Nauk SSSR (N.S.) 1957; 115: 17-19.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2015 Ana Maria Acu, Daniel Florin Sofonea