Existence Theory and Stability Analysis of Nonlinear Neutral Pantograph Equations via Hilfer-Katugampola Fractional Derivative

Authors

  • S. Harikrishnan Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641020, India
  • E.M. Elsayed King AbdulAziz University, Jeddah 21589, Saudi Arabia
  • K. Kanagarajan Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641020, India

DOI:

https://doi.org/10.15377/2409-5761.2020.07.1

Keywords:

Hilfer-Katugampola fractional derivative, Neutral pantograph equation, Existence, Stability, Fixed point.

Abstract

 The aim and objectives of this paper are devoted to study some adequate results for the existence and stability of solutions of nonlinear neutral pantograph equations with Hilfer-Katugampola fractional derivative. The arguments are based upon Schauder fixed point theorem and Banach contraction principle. Further, we also study the Ulam type stability for proposed problem.

Downloads

Download data is not yet available.

Author Biographies

  • S. Harikrishnan, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641020, India
    Department of Mathematics
  • E.M. Elsayed, King AbdulAziz University, Jeddah 21589, Saudi Arabia
    Department of Mathematics, Faculty of Science
  • K. Kanagarajan, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore-641020, India
    Department of Mathematics

References

Ahmad B, Ntouyas SK. Initial value problems of fractional order Hadamard-type functional differential equations. Electron J Diff Equ. 2015; 77: 1-9. DOI: https://doi.org/10.1186/s13662-015-0625-1

Furati KM, Tatar NE. An existence results for a nonlocal fractional differetial problem. J Fractional Calculus, 2004; 26: 43-51.

Kilbas AA, Srivastava HM, Trujillo JJ. Theory and Applications of Fractional Differential Equations, in: Mathematics Studies, 2006; 204: Elsevier.

Podlubny I. Fractional Differential Equations, in: Mathematics in Science and Engineering, 1999; 198: Acad. Press.

Oliveira DS. E. Capelas de oliveira, Hilfer-Katugampola fractional derivative. Comp Appl Math. 2018; 37: 3672-3690. DOI: https://doi.org/10.1007/s40314-017-0536-8

Hilfer R. Application of fractional Calculus in Physics, World Scientific, Singapore, 1999. DOI: https://doi.org/10.1142/3779

Furati KM, Kassim MD, Tatar NE. Existence and uniqueness for a problem involving Hilfer fractional derivative. Comput Math Appl. 2012; 64: 1616-1626. DOI: https://doi.org/10.1016/j.camwa.2012.01.009

Gu H, Trujillo JJ. Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl Math Comput. 2014; 257: 344-354. DOI: https://doi.org/10.1016/j.amc.2014.10.083

Katugampola UN. Existence and uniqueness results for a class of generalized fractional differential equations Bull Math Anal App. 2014; 6(4): 1-15.

Kamocki R, Obcznnski C. On fractional Cauchy-type problems containing Hilfer derivative. Electron J Qual Theory Differ Equ. 2016; 50: 1-12. DOI: https://doi.org/10.14232/ejqtde.2016.1.50

Vivek D, Kanagarajan K, Harikrishnan S. Existence and uniqueness results for pantograph equations with generalized fractional derivative. J Nonlinear Anal Appl. 2017; 2017(1): 1-8.

Vivek D, Kanagarajan K, Harikrishnan S. Existence results for implicit differential equations with generalized fractional derivative. J Nonlinear Anal Appl. 2017; (Accepted article-ID 00371).

Abbas S, Benchohra M, Sivasundaram S. Dynamics and Ulam stability for Hilfer type fractional differential equations. Nonlinear Stud. 2016; 4: 627-637.

Ibrahim RW, Jalab HA. Existence of Ulam stability for iterative fractional differential equations based on fractional entropy, Entropy 2015; 17(5): 3172. DOI: https://doi.org/10.3390/e17053172

Ibrahim RW. Generalized Ulam-Hyers stability for fractional differential equations. Int J Math. 2012; 23: 1-9. DOI: https://doi.org/10.1155/2012/613270

Muniyappan P, Rajan S. Hyers-Ulam-Rassias stability of fractional differential equation. Int J Pure Appl Math. 2015; 102: 631-642. DOI: https://doi.org/10.12732/ijpam.v102i4.4

Wang J, Lv L, Zhou Y. Ulam stability and data dependence for fractional differential equations with Caputo derivative. Electron J Qual Theory Differ Equ. 2011; 63: 1-10. DOI: https://doi.org/10.14232/ejqtde.2011.1.63

Balachandran K, Kiruthika S, Trujillo JJ. Existence of solutions of Nonlinear fractional pantograph equations. Acta Math Sci. 2013; 33B: 712-720. DOI: https://doi.org/10.1016/S0252-9602(13)60032-6

Iserles A. On the generalized pantograph functional differential equation. Eur J Appl Math. 1993; 4(1): 1-38. DOI: https://doi.org/10.1017/S0956792500000966

Vivek D, Kanagarajan K, Sivasundaram S. Dynamics and stability of pantograph equations via Hilfer fractional derivative. Nonlinear Stud. 2016; 23(4): 685-698.

Vivek D, Kanagarajan K, Sivasundaram S. Theory and analysis of nonlinear neutral pantograph equation via Hilfer fractional derivative. Nonlinear Stud. 2017; 24(3): 699-712. DOI: https://doi.org/10.5899/2017/jnaa-00370

Downloads

Published

2020-08-20

Issue

Section

Articles

How to Cite

Existence Theory and Stability Analysis of Nonlinear Neutral Pantograph Equations via Hilfer-Katugampola Fractional Derivative. (2020). Journal of Advances in Applied & Computational Mathematics, 7, 1-7. https://doi.org/10.15377/2409-5761.2020.07.1

Similar Articles

1-10 of 46

You may also start an advanced similarity search for this article.