Influence of Primary Porosity on Epikarst Evolution and Surface Karst Features in Limestone, Dolomite, and Evaporites

Authors

  • Márton Veress Department of Geography, Savaria University Centre, Eötvös Lóránd University, Szombathely 9700, Hungary https://orcid.org/0000-0003-4718-4225

DOI:

https://doi.org/10.15377/2409-5710.2025.12.6

Keywords:

Primary porosity, Drawdown dolines, Karst geomorphology, Epikarst development, Limestone, dolomite, evaporites, Cavity formation and dissolution processes

Abstract

The characteristics and effect of the epikarst in karstifying rocks on surface feature development was studied based on literary data. Relationship of porosity, epikarst and feature development of limestone, dolomite and evaporite was established on well-soluble, less re-crystallized limestones with medium primary porosity. The degree of cavity formation is well-developed in the rock including its heterogeneous vertical percolation, which result in the development of drawdown dolines in the reviewed studied rocks. On well-soluble evaporites, the vertical percolation rate of homogeneous distribution was diagnosed and does not favour the heterogeneous cavity formation of the epikarst, the piezometric level and the development of drawdown dolines. On limestones , marble and dolomite of low porosity, the dissolution of low degree and low primary porosity hindered the development of a matured epikarst with cavities and of the piezometric surface and thus, of drawdown dolines. Surface features karren, dolines also develop on well-soluble karstic rocks with medium primary porosity. These features are well-developed with heterogeneous secondary porosity that leads to cavity formation. Low primary porosity recrystallized rocks facilitates infiltration and dissolution capacity decreases that concentrates into drainage open fractures.

Downloads

Download data is not yet available.

References

Bakalowicz M. Epikarst. In: White WB, Culver DC, Pipan T. Encyclopedia of caves. 2nd ed. Amsterdam: Elsevier; 2019. p. 394-8. https://doi.org/10.1016/B978-0-12-814124-3.00045-5 DOI: https://doi.org/10.1016/B978-0-12-814124-3.00045-5

De Waele J, Gutiérrez F. Karst hydrogeology. In: De Waele J, Gutiérrez F, Eds. Karst hydrogeology, geomorphology and caves. Hoboken (NJ): Wiley Blackwell; 2022. p. 260-335. https://doi.org/10.1002/9781119605379.ch5 DOI: https://doi.org/10.1002/9781119605379.ch5

Mangin A. Sur la dynamique des transferts en aquifère karstique. In: Proceedings of the 6th International Congress of Speleology. Olomouc (CSSR); 1973. Vol 6. p. 157–62.

Mangin A. Contribution à l’étude hydrodynamique des aquifères karstiques (doctoral thesis). Dijon: Université de Dijon; 1975. Ann Speleol. 29(3): 283-332; 29(4):495-601; 30(1):21–124.

Williams PW. The role of the epikarst in karst and cave hydrogeology: a review. Int J Speleol. 2008; 37(1): 1–10. https://doi.org/10.5038/1827-806X.37.1.1 DOI: https://doi.org/10.5038/1827-806X.37.1.1

Jones WK. Physical structure of the epikarst. Acta Carsol. 2013; 42(2-3): 311–4. https://doi.org/10.3986/ac.v42i2-3.672 DOI: https://doi.org/10.3986/ac.v42i2-3.672

Böcker T. A karsztvizek mozgásviszonyai természetes körülmények között. In: II. Anyag- és Energia Áramlási Ankét. Budapest: Akadémiai Kiadó; 1971.

Klimchouk AB. Towards defining, delimiting and classifying epikarst: its origin, processes and variants of geomorphic evolution. In: Jones WK, Culver DC, Herman JS, Eds. Epikarst. Spec Publ 9. Charles Town (WV): Karst Waters Institute; 2004. p. 23-35.

Haqbin MM, Inanch S, Qarizada K, Qarizada DK, Kambakhsh H. Unveiling the geological significance and industrial application of limestone: a comprehensive review. J Inst Eng Malays. 2024; 85(1): 31-43. https://doi.org/10.54552/v85i1.238 DOI: https://doi.org/10.54552/v85i1.238

Dunham RJ. Classification of carbonate rocks according to depositional texture. In: Ham WE, Ed. Classification of carbonate rocks. AAPG Mem 1. Tulsa (OK): AAPG; 1962. p. 108–21. https://doi.org/10.1306/M1357 DOI: https://doi.org/10.1306/M1357

Thayer PA. Relationship of porosity and permeability to petrology of the Madison Limestone. US Geol Surv Prof Pap. 1983; 1273-C: 28. https://doi.org/10.3133/pp1273C DOI: https://doi.org/10.3133/pp1273C

Moore CH. Carbonate reservoirs: porosity evolution and diagenesis in a sequence stratigraphic framework. Dev Sedimentol. Vol 55. Amsterdam: Elsevier; 2001. p. 444.

Choquette PW, Pray LC. Geologic nomenclature and classification of porosity in sedimentary carbonates. AAPG Bull. 1970; 54(2): 207-50. https://doi.org/10.1306/5D25C98B-16C1-11D7-8645000102C1865D DOI: https://doi.org/10.1306/5D25C98B-16C1-11D7-8645000102C1865D

Burne RV, Moore LS. Microbialites: organosedimentary deposits of benthic microbial communities. Palaios. 1987; 2(3): 241-54. https://doi.org/10.2307/3514674 DOI: https://doi.org/10.2307/3514674

Freeze RA, Cherry JA. Groundwater. Englewood Cliffs (NJ): Prentice Hall; 1979. p. 312.

Ford DC, Williams PW. Karst hydrogeology and geomorphology. Chichester: John Wiley & Sons; 2007. p. 562. https://doi.org/10.1002/9781118684986 DOI: https://doi.org/10.1002/9781118684986

Dingman SL. Physical hydrology. 3rd ed. Long Grove (IL): Waveland Press; 2015. p. 643.

Palmer AN. Origin and morphology of limestone caves. Geol Soc Am Bull. 1991; 103: 1-21. https://doi.org/10.1130/0016-7606(1991)103<0001:OAMOLC>2.3.CO;2 DOI: https://doi.org/10.1130/0016-7606(1991)103<0001:OAMOLC>2.3.CO;2

Groves CG, Howard AD. Early development of karst systems: 1. Preferential flow path enlargement under laminar flow. Water Resour Res. 1994; 30(10): 2837-46. https://doi.org/10.1029/94WR01303 DOI: https://doi.org/10.1029/94WR01303

Dreybrodt W. Principles of early development of karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models. Water Resour Res. 1996; 32(9): 2923-35. https://doi.org/10.1029/96WR01332 DOI: https://doi.org/10.1029/96WR01332

Gabrovšek F, Dreybrodt W. A model of early evolution of karst aquifers in limestone in the dimensions of length and depth. J Hydrol. 2001; 240(3-4): 206-24. https://doi.org/10.1016/S0022-1694(00)00323-1 DOI: https://doi.org/10.1016/S0022-1694(00)00323-1

Yang H, Luo Y, Zhou Q, Yuan Z, Shi C, Li Y. Influence of interlayer fissures on runoff characteristics of karst slopes: insights from simulated rainfall experiments. J Hydrol. 2026; 664(Pt A). https://doi.org/10.1016/j.jhydrol.2025.134415 DOI: https://doi.org/10.1016/j.jhydrol.2025.134415

Williams PW. The role of the subcutaneous zone in karst hydrology. J Hydrol. 1983; 61: 45-67. https://doi.org/10.1016/0022-1694(83)90234-2 DOI: https://doi.org/10.1016/0022-1694(83)90234-2

Williams PW. Subcutaneous hydrology and the development of doline and cockpit karst. Z Geomorphol. 1985; 29(1): 463-82. https://doi.org/10.1127/zfg/29/1985/463 DOI: https://doi.org/10.1127/zfg/29/1985/463

Williams PW. Dolines. In: Gunn J, Eds. Encyclopedia of caves and karst science. New York: Fitzroy Dearborn; 2004. p. 304–10.

Ford DC, Williams PW. Karst hydrogeology and geomorphology. London: Unwin Hyman; 1985. p. 601.

Sauro U. Closed depressions in karst areas. In: White WB, Culver DC. Encyclopedia of caves. Amsterdam: Elsevier; 2012. p. 140–55. https://doi.org/10.1016/B978-0-12-383832-2.00133-X DOI: https://doi.org/10.1016/B978-0-12-383832-2.00133-X

De Waele J, Gutiérrez F. Other karst landforms. In: De Waele J, Gutiérrez F, Eds. Karst hydrogeology, geomorphology and caves. Hoboken (NJ): Wiley Blackwell; 2022. p. 466-516. https://doi.org/10.1002/9781119605379.ch5 DOI: https://doi.org/10.1002/9781119605379.ch7

Gams I. The polje: the problem of definition. Z Geomorphol. 1978; 22: 170-81. https://doi.org/10.1007/BF01917657 DOI: https://doi.org/10.1007/BF01917657

Waltham T. Fencong, fenglin, cone karst and tower karst. Cave Karst Sci. 2008; 35(3): 77-88.

Melezhik VA, Fallick AE, Hanski EJ. Ancient seawater signatures in Palaeoproterozoic carbonate rocks: implications for the Earth’s atmosphere and hydrosphere. Earth Sci Rev. 2006; 78(1-2): 1-38.

Schopf JW. Solution to Darwin’s dilemma: discovery of the missing Precambrian record of life. Proc Natl Acad Sci U S A. 2000; 97(13): 6947-53. https://doi.org/10.1073/pnas.97.13.6947 DOI: https://doi.org/10.1073/pnas.97.13.6947

Veress M. Karst environments: karren formation in high mountains. Dordrecht: Springer; 2010. p. 230. DOI: https://doi.org/10.1007/978-90-481-3550-9

White WB. Geomorphology and hydrology of karst terrains. New York: Oxford University Press; 1988. p. 464.

Mayer T, Deprez M, Schröer L, Cnudde V, Draebing D. Quantifying frost-weathering-induced damage in alpine rocks. Cryosphere. 2024; 18: 2847-64. https://doi.org/10.5194/tc-18-2847-2024 DOI: https://doi.org/10.5194/tc-18-2847-2024

Maire R, Jaillet S, Hobléa F. Karren in Patagonia, a natural laboratory for hydrogeolian dissolution. In: Ginés A, Knez M, Slabe T, Dreybrodt W, Eds. Karst rock features: karren sculpturing. Postojna–Ljubljana: Založba ZRC; 2009. p. 329–48.

Veress M, Szunyogh G, Tóth G, Zentai Z, Czöpek I. The effect of the wind on karren formation on the Island of Diego de Almagro (Chile). Z Geomorphol. 2006; 50: 425-45. https://doi.org/10.1127/zfg/50/2006/425 DOI: https://doi.org/10.1127/zfg/50/2006/425

Salomon JN. The tsingy karrenfields of Madagascar. In: Ginés A, Knez M, Slabe T, Dreybrodt W, Eds. Karst rock features: karren sculpturing. Postojna–Ljubljana; 2009. p. 411–22.

Veress M, Lóczy D, Zentai Z, Tóth G, Schläffer R. The origin of the Bemaraha tsingy (Madagascar). Int J Speleol. 2008; 37(2): 131-42. https://doi.org/10.5038/1827-806X.37.2.6 DOI: https://doi.org/10.5038/1827-806X.37.2.6

Dobrilla J. Le massif karstique de Bemaraha. Spelunca. 2006; 102: 13-42.

Wagensommer A, Latiano M, Leroux G, Cassano G, D’Orazi Porchetti S. New dinosaur tracksites from the Middle Jurassic of Madagascar: ichnotaxonomical, behavioural and palaeoenvironmental implications. Palaeontology. 2012; 55: 109-26. https://doi.org/10.1111/j.1475-4983.2011.01121.x DOI: https://doi.org/10.1111/j.1475-4983.2011.01121.x

Cooke HJ. A tropical karst in north-east Tanzania. Z Geomorphol. 1973; 17: 443-59. https://doi.org/10.1127/zfg/17/1973/443 DOI: https://doi.org/10.1127/zfg/17/1973/443

Grimes KG. Tropical monsoon karren in Australia. In: Ginés Á, Knez M, Slabe T, Dreybrodt W, Eds. Karst rock features: karren sculpturing. Postojna–Ljubljana: Založba ZRC; 2009. p. 391-410.

Grimes KG. Surface karst features of the Judbarra/Gregory National Park, Northern Territory, Australia. Helictite. 2012; 41: 15-36.

Martini EJ, Grimes KG. Epikarstic maze cave development: Bullita Cave System, Judbarra/Gregory Karst, tropical Australia. Helictite. 2012; 41: 37-66.

Gillieson D. Natural heritage values of the Chillagoe and Mitchell–Palmer karst and caves. N Qld Nat. 2016; 46: 71-85.

Mangin A. Some features of the Stone Forest of Lunan, Yunnan, China. In: Song L, Waltham T, Cao N, Wang S, Eds. Stone forest: a treasure of natural heritage. Proceedings of the International Symposium for Lunan Shilin to Apply for World Natural Heritage Status. Beijing: China Environmental Science Press; 1997. p. 68-70.

Jiang Q, Wang W, Lyu Q. Characteristics and controlling factors of tight marl reservoirs with an eyelid-shaped structure of the first member of the deep Maokou Formation in eastern Sichuan. Energies. 2023; 16(5): 2353. https://doi.org/10.3390/en16052353 DOI: https://doi.org/10.3390/en16052353

Song LH. Origination of stone forests in China. Int J Speleol. 1986; 15: 3-13. https://doi.org/10.5038/1827-806X.15.1.1 DOI: https://doi.org/10.5038/1827-806X.15.1.1

Knez M, Slabe T. Shilin: the formation of stone forests on various rock types. In: Knez M, Liu H, Slabe T, Eds. South China Karst II. Ljubljana–Postojna: Karst Research Institute; 2011. p. 35-48. https://doi.org/10.3986/9789610503217 DOI: https://doi.org/10.3986/9789610503217

Veress M. Covered karst. Berlin/Heidelberg: Springer; 2016. p. 536. https://doi.org/10.1007/978-94-017-7518-2 DOI: https://doi.org/10.1007/978-94-017-7518-2

Pluhar A, Ford DC. Dolomite karren of the Niagara Escarpment, Ontario, Canada. Z Geomorphol. 1970; 14: 392-410. DOI: https://doi.org/10.1127/zfg/14/1970/392

Veress M. Rubbles mines in the environs of Veszprém (Bakony Region, Hungary). Mining. 2023; 3(4): 579-604. https://doi.org/10.3390/mining3040032 DOI: https://doi.org/10.3390/mining3040032

Naouadir I, Dridri A, El Asmi C, Chellai EH, Ettaki M, Lyazidi A. Morphogenesis of the closed depressions in the Middle Atlas: case of the Causs of El Menzel, Morocco. Iraqi Geol J. 2023; 56(2E): 256-76. https://doi.org/10.46717/igj.56.2E.18ms-2023-11-23 DOI: https://doi.org/10.46717/igj.56.2E.18ms-2023-11-23

Jakucs L. Morphogenetics of karst regions. Bristol: Adam Hilger; 1977. p. 284. https://doi.org/10.1016/S0031-4056(23)00565-6 DOI: https://doi.org/10.1016/S0031-4056(23)00565-6

Trombe F. Traité de spéléologie. Paris; 1952. p. 352.

Racey A. A review of Eocene nummulite accumulations: structure, formation and reservoir potential. J Pet Geol. 2001; 24(1): 79-100. https://doi.org/10.1111/j.1747-5457.2001.tb00662.x DOI: https://doi.org/10.1111/j.1747-5457.2001.tb00662.x

Waltham T, Bell F, Culshaw M. Sinkholes and subsidence. Berlin–Heidelberg: Springer; 2005. p. 382.

Haas J, Hips K. A rejtelmes dolomit. Földtani Közlöny. 2020; 150(2): 233. https://doi.org/10.23928/foldt.kozl.2020.150.2.233 DOI: https://doi.org/10.23928/foldt.kozl.2020.150.2.233

Alföldi A. Dunántúli-középhegység földtani körülményei. In: Alföldi L, Kapolyi L, editors. Bányászati karsztvízszint-süllyedés a Dunántúli-középhegységben. Budapest: Magyar Tudományos Akadémia, Földrajztudományi Kutatóintézet; 2007. p. 49-75.

Hegyiné Pakó J, Podány T, Vitális GY. A dolomit bányászata és felhasználása [Mining and usage of dolostone]. Budapest: Műszaki Könyvkiadó; 1984. p. 312. Hungarian.

Bence G, Bernhardt B, Bihari D, Bálint C, Császár G, Gyalog L, et al. A Bakony hegység földtani képződményei: magyarázó a Bakony hegység fedetlen földtani térképéhez 1:50 000 [Geology of the Bakony Mountains]. Budapest: Magyar Állami Földtani Intézet; 1990. Hungarian.

Koch S, Sztrókay K. Ásványtan II [Mineralogy]. Budapest: Tankönyvkiadó; 1967. p. 936. Hungarian.

Penck A. Das unterirdische Karstphänomen. In: Vujević P. Zbornik radova posvećen Jovanu Cvijiću. Belgrade; 1924. p. 175-97.

Jennings JN. Karst. Cambridge (MA): MIT Press; 1973. p. 253.

McKee ED, Williams C, Ward WC. Eolian environment. In: Scholle PA, Bebout DE, Moore CH, editors. Carbonate depositional environments. AAPG Mem 33. Tulsa (OK): American Association of Petroleum Geologists; 1983. p. 131-70. https://doi.org/10.1306/M33429C7 DOI: https://doi.org/10.1306/M33429C7

Grimes KG. Solution pipes of petrified forests? Drifting sands and drifting opinions! Vict Nat. 2004; 121(1): 14-22.

Rodet J. La craie et ses karsts. Caen: Centre de Géomorphologie du Centre National de la Recherche Scientifique; 1992. p. 560.

Edmonds CN. Predicting natural cavities in chalk. Geol Soc Eng Geol Spec Publ. 2001; 18: 283-93. https://doi.org/10.1144/GSL.ENG.2001.018.01.05 DOI: https://doi.org/10.1144/GSL.ENG.2001.018.01.05

Ferrare F, Macaluso T, Madonia G, Palmeri A, Sauro U. Solution and recrystallisation processes and associated landforms in gypsum outcrops. Geomorphology. 2002; 49: 25-43. https://doi.org/10.1016/S0169-555X(02)00159-9 DOI: https://doi.org/10.1016/S0169-555X(02)00159-9

Guinea A, Playà E, Rivero L, Ledo J, Queralt P. The electrical properties of calcium sulfate rocks from decametric to micrometric scale. J Appl Geophys. 2012; 85: 80-91. https://doi.org/10.1016/j.jappgeo.2012.07.003 DOI: https://doi.org/10.1016/j.jappgeo.2012.07.003

De Las Cuevas C. Pore structure characterization in rock salt. Eng Geol. 1997; 47(1–2): 17-30. https://doi.org/10.1016/S0013-7952(96)00116-0 DOI: https://doi.org/10.1016/S0013-7952(96)00116-0

Sadeghiamirshahidi M, Vitton S. Laboratory study of gypsum dissolution rates for an abandoned underground mine. Rock Mech Rock Eng. 2019; 52: 2053-2066. https://doi.org/10.1007/s00603-018-1696-6 DOI: https://doi.org/10.1007/s00603-018-1696-6

Veress M, Zentai Z, Unger Z. Hat rock: solution features in metamorphic mountains. In: Lóczy D, editor. Landscapes and landforms of Hungary. Cham: Springer; 2015. p. 47-54. https://doi.org/10.1007/978-3-319-08997-3_6 DOI: https://doi.org/10.1007/978-3-319-08997-3_6

Downloads

Published

2025-12-12

Issue

Section

Articles

How to Cite

1.
Veress M. Influence of Primary Porosity on Epikarst Evolution and Surface Karst Features in Limestone, Dolomite, and Evaporites. Glob. J. Earth Sci. Eng. [Internet]. 2025 Dec. 12 [cited 2026 Feb. 13];12:91-109. Available from: https://avantipublishers.com/index.php/gjese/article/view/1732

Similar Articles

1-10 of 31

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)