Adjustment and Gross Errors Detection of Free Triangulation Geodetic Network Using Minimum-Norm Least-Squares Inverses and Data Snooping
DOI:
https://doi.org/10.15377/2409-5710.2015.02.02.2Keywords:
Minimum-norm least-squares, triangulation network, iterative procedure, free-network, data snooping procedure, T-Test criterion, critical valueAbstract
We utilise minimum-norm least-squares based on the indirect observations methods to adjust our 2-dimensional triangulation network. The main objective of this paper is to optimally adjust the approximate coordinates of the nodes (points) of the given network. The network observations (11 measured distances and 17 angles) have been adjusted by being combined in linear system of equations in terms of free-network adjustment procedure to rigorously adjust the approximate coordinates over the network points. We obtained better converged values by applying an iterative procedure, the minimum corrections for the free-network coordinates are obtained after a number of five iterations. The data snooping procedure has been used to test the reliability and precision of the network observations. The T-Test criterion is then applied for gross error detection, five angles and two lines are suspected to include gross errors at a critical value of 1.98.
Downloads
References
Allan AL, Hollwey JR and Maynes JHB. Practical Field Surveying and Computations. London: Butterworth- Heinemann Ltd; 1973.
Anderson JM, Anderson JM and Mikhail EM. Surveying, theory and practice. 7th ed WCB/McGraw-Hill; 1998.
De A. Plane Surveying. S Chand 2000.
Ghilani CD. Adjustment Computations: Spatial Data Analysis. 5th ed. Hoboken. NJ Wiley; 2010.
Kuang S. Geodetic Network Analysis and Optimal Design: Concepts and Applications. Ann Arbor Press 1996.
Schmitt G. Review of Network Designs: Criteria, Risk Functions. Design Ordering In: Grafarend EW, Sansó F, editors. Optimization and Design of Geodetic Networks. Springer Berlin Heidelberg 1985; 6-10. DOI: https://doi.org/10.1007/978-3-642-70659-2_2
Schmitt G. Second Order Design. In: Grafarend EW, Sansó F, editors. Optimization and Design of Geodetic Networks. Springer Berlin Heidelberg 1985; 74-121. DOI: https://doi.org/10.1007/978-3-642-70659-2_5
Schmitt G. Third Order Design. In: Grafarend EW, Sansó F, editors. Optimization and Design of Geodetic Networks. Springer Berlin Heidelberg 1985; 122-131. DOI: https://doi.org/10.1007/978-3-642-70659-2_6
Teunissen P. Zero Order Design: Generalized Inverses, Adjustment, the Datum Problem and S-Transformations. In: Grafarend EW, Sansó F, editors. Optimization and Design of Geodetic Networks. Springer Berlin Heidelberg 1985; 11-55. DOI: https://doi.org/10.1007/978-3-642-70659-2_3
Grafarend EW and Sansó F. Optimization and Design of Geodetic Networks. Springer Berlin Heidelberg 1985. DOI: https://doi.org/10.1007/978-3-642-70659-2
Mittermayer E. A generalisation of the least-squares method for the adjustment of free networks. Bulletin Géodésique 1972; 104(1): 139-157. DOI: https://doi.org/10.1007/BF02530298
Welsch W. A review of the adjustment of free networks. Survey Review 1979; 25(194): 167-180. DOI: https://doi.org/10.1179/sre.1979.25.194.167
Perelmuter A. Adjustment of free networks. Bulletin Géodésique 1979; 53(4): 291-295. DOI: https://doi.org/10.1007/BF02522272
Blaha G. A note on adjustment of free networks. Bulletin Géodésique 1982; 56(4): 281-299. DOI: https://doi.org/10.1007/BF02525729
Eshagh M and Kiamehr R. A strategy for optimum designing of the geodetic networks from the cost, reliability and precision views. Acta Geodaetica et Geophysica Hungarica 2013; 42(3): 297-308. DOI: https://doi.org/10.1556/AGeod.42.2007.3.4
Bjerhammar A. Theory of errors and generalized matrix inverses. Elsevier 1973.
Fan H. Theory of Errors and Least Squares Adjustment. Stockholm, Sweden: Royal Institute of Technology (KTH) 1997.
Abdalla A. Adjustment of 2-dimensional geodetic networks. Royal Institute of Technology (KTH) 2008.
Chan T and Hansen P. Some Applications of the Rank Revealing QR Factorization. SIAM Journal on Scientific and Statistical Computing 1992; 13(3): 727-741. DOI: https://doi.org/10.1137/0913043
Hong YP and Pan CT. Rank-Revealing QR Factorizations and the Singular Value Decomposition. Mathematics of Computation 1992; 58(197): 213-232. DOI: https://doi.org/10.1090/S0025-5718-1992-1106970-4
Gu M and Eisenstat SC. Efficient algorithms for computing a strong rank-revealing QR factorization. Siam Journal on Scientific Computing 1996; 17(4): 848-869. DOI: https://doi.org/10.1137/0917055
Baarda W. Some Remarks on the Computation and Adjustment of Large Systems of Geodetic Triangulation: Report Pres. at the Tenth General Assembly of the Int Ass of Geodesy at Rome 1954; 1957. DOI: https://doi.org/10.1007/BF02527245
Baarda W. Statistical concepts in geodesy. Netherlands: Waltman 1967.
Baarda W. S-transformations and criterion matrices. Netherlands: Rijkscommissie voor Geodesie 1981.
Baarda W. Precision, Accuracy and Reliability of Observations. Delft, Netherlands: Technische Hogeschool Delft Afdeling der Geodesie 1983.
Teunissen P. Network quality control. VSSD 2006.
Downloads
Published
Issue
Section
License
All the published articles are licensed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.


