Visualization Experiments of Radial-Rotating Oscillating Heat Pipe Filled with Methanol
Abstract - 44
PDF

Keywords

Flow pattern
Visualization
Motion mode
Radial-rotating oscillating heat pipe

How to Cite

1.
Wang J, Qian N, Fu Y. Visualization Experiments of Radial-Rotating Oscillating Heat Pipe Filled with Methanol. Glob. J. Energ. Technol. Res. Updat. [Internet]. 2023 Dec. 9 [cited 2024 Jun. 26];10:24-32. Available from: https://avantipublishers.com/index.php/gjetru/article/view/1467

Abstract

Oscillating heat pipes (OHP) have highly efficient heat transfer capability. Some researchers have applied OHPs to cutting tools and rotating machines by embedding tubular OHPs in machines or by making flow channels on metal plates. Most studies are on heat transfer performance, and there are few studies on the heat transfer behavior of radial-rotating oscillating heat pipes (RR-OHP) under operating conditions. This paper conducted the visualization test of an RR-OHP filled with methanol by studying the flow patterns and motion modes at rotation speed (0-860 rpm) and heat flux (20000-40000 W/m2). When the heat flux is increased from 20000 W/m2 to 40000 W/m2, the flow patterns include flowless, slug flow, annular flow, and churn flow, and the motion modes contain oscillatory motion, cyclic motion, unilateral boiling, and bilateral boiling. The distribution map of the flow patterns and motion modes with the centrifugal acceleration and the heat flux was plotted, which shows the evolution of the flow patterns and the transformation of the motion modes of the RR-OHP, and elucidates the effect of the centrifugal acceleration and the heat flux on the flow patterns and motion modes.

https://doi.org/10.15377/2409-5818.2023.10.2
PDF

References

Sathe TM, Wankhede US. Review on closed loop oscillating heat pipe. Int J Eng Res Technol. 2014; 3: 1195-201.

Han X, Wang X, Zheng H, Xu X, Chen G. Review of the development of pulsating heat pipe for heat dissipation. Renew Sustain Energy Rev. 2016; 59: 692-709. https://doi.org/10.1016/j.rser.2015.12.350

Ma HB, Borgmeyer B, Cheng P, Zhang Y. Heat transport capability in an oscillating heat pipe. J Heat Transfer. 2008; 130(8): 081501. https://doi.org/10.1115/1.2909081

Ma H. Oscillating heat pipes. New York, NY: Springer New York; 2015. https://doi.org/10.1007/978-1-4939-2504-9

Liu X, Han X, Wang Z, Hao G, Zhang Z, Chen Y. Application of an anti-gravity oscillating heat pipe on enhancement of waste heat recovery. Energy Convers Manag. 2020; 205: 112404. https://doi.org/10.1016/j.enconman.2019.112404

Qu J, Guan F, Lv Y, Wang Y. Experimental study on the heat transport capability of micro-grooved oscillating heat pipe. Case Stud Therm Eng. 2021; 26: 101210. https://doi.org/10.1016/j.csite.2021.101210

Im YH, Lee JY, Ahn TI, Youn YJ. Operational characteristics of oscillating heat pipe charged with R-134a for heat recovery at low temperature. Int J Heat Mass Transf. 2022; 196: 123231. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123231

Liu X, Chen X, Zhang Z, Chen Y. Thermal performance of a novel dual-serpentine-channel flat-plate oscillating heat pipe used for multiple heat sources and sinks. Int J Heat Mass Transf. 2020; 161: 120293. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120293

Lin Z, Wang S, Huo J, Hu Y, Chen J, Zhang W, et al. Heat transfer characteristics and LED heat sink application of aluminum plate oscillating heat pipes. Appl Therm Eng. 2011; 31: 2221-9. https://doi.org/10.1016/j.applthermaleng.2011.03.003

Wu Z, Xing Y, Liu L, Huang P, Zhao G. Design, fabrication and performance evaluation of pulsating heat pipe assisted tool holder. J Manuf Process. 2020; 50: 224-33. https://doi.org/10.1016/j.jmapro.2019.12.054

Wu Z, Deng J, Su C, Luo C, Xia D. Performance of the micro-texture self-lubricating and pulsating heat pipe self-cooling tools in dry cutting process. Int J Refract Metals Hard Mater. 2014; 45: 238-48. https://doi.org/10.1016/j.ijrmhm.2014.02.004

Wu Z, Bao H, Xing Y, Liu L. Dry cutting performance and heat transfer simulation of pulsating heat pipe self-cooling tool holder. J Manuf Process. 2022; 83: 129-42. https://doi.org/10.1016/j.jmapro.2022.08.055

Ji Y, Ma H, Su F, Wang G. Particle size effect on heat transfer performance in an oscillating heat pipe. Exp Therm Fluid. 2011; 35: 724-7. https://doi.org/10.1016/j.expthermflusci.2011.01.007

Ma HB, Wilson C, Yu Q, Park K, Choi US, Tirumala M. An experimental investigation of heat transport capability in a nanofluid oscillating heat pipe. J Heat Transfer. 2006; 128: 1213-6. https://doi.org/10.1115/1.2352789

Hao T, Ma X, Lan Z, Li N, Zhao Y, Ma H. Effects of hydrophilic surface on heat transfer performance and oscillating motion for an oscillating heat pipe. Int J Heat Mass Transf. 2014; 72: 50–65. https://doi.org/10.1016/j.ijheatmasstransfer.2014.01.007

Jung C, Kim SJ. Effects of oscillation amplitudes on heat transfer mechanisms of pulsating heat pipes. Int J Heat Mass Transf. 2021; 165: 120642. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120642

Jo J, Kim J, Kim SJ. Experimental investigations of heat transfer mechanisms of a pulsating heat pipe. Energy Convers Manag. 2019; 181: 331–41. https://doi.org/10.1016/j.enconman.2018.12.027

Liu X, Chen Y. Fluid flow and heat transfer in flat-plate oscillating heat pipe. Energy Build. 2014; 75: 29-42. https://doi.org/10.1016/j.enbuild.2014.01.041

Nuntaphan A, Vithayasai S, Vorayos N, Vorayos N, Kiatsiriroat T. Use of oscillating heat pipe technique as extended surface in wire-on-tube heat exchanger for heat transfer enhancement. Int Commun Heat Mass Transfer. 2010; 37: 287–92. https://doi.org/10.1016/j.icheatmasstransfer.2009.11.006

Iwata N, Miyazaki Y, Yasuda S, Ogawa H. Thermal performance and flexibility evaluation of metallic micro oscillating heat pipe for thermal strap. Appl Therm Eng. 2021; 197: 117342. https://doi.org/10.1016/j.applthermaleng.2021.117342

Li Q-M, Zou J, Yang Z, Duan Y-Y, Wang B-X. Visualization of two-phase flows in nanofluid oscillating heat pipes. J Heat Transfer. 2011; 133: 11–5. https://doi.org/10.1115/1.4003043

Xu JL, Li YX, Wong TN. High speed flow visualization of a closed loop pulsating heat pipe. Int J Heat Mass Transf. 2005; 48: 3338-51. https://doi.org/10.1016/j.ijheatmasstransfer.2005.02.034

Su Z, Hu Y, Zheng S, Wu T, Liu K, Zhu M, et al. Recent advances in visualization of pulsating heat pipes: A review. Appl Therm Eng. 2023; 221: 119867. https://doi.org/10.1016/j.applthermaleng.2022.119867

Spinato G, Borhani N, d’Entremont BP, Thome JR. Time-strip visualization and thermo-hydrodynamics in a closed loop pulsating heat pipe. Appl Therm Eng. 2015; 78: 364-72. https://doi.org/10.1016/j.applthermaleng.2014.12.045

Yasuda Y, Nabeshima F, Horiuchi K, Nagai H. Visualization of the working fluid in a flat-plate pulsating heat pipe by neutron radiography. J Heat Mass Transf. 2022; 185: 122336. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122336

Zhang D, He Z, Guan J, Tang S, Shen C. Heat transfer and flow visualization of pulsating heat pipe with silica nanofluid: An experimental study. Int J Heat Mass Transf. 2022; 183: 122100. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122100

Senjaya R, Inoue T. Bubble generation in oscillating heat pipe. Appl Therm Eng. 2013; 60: 251-5. https://doi.org/10.1016/j.applthermaleng.2013.06.041

Schwarz F, Uddehal SR, Lodermeyer A, Bagheri EM, Forster-Heinlein B, Becker S. Interaction of flow pattern and heat transfer in oscillating heat pipes for hot spot applications. Appl Therm Eng. 2021; 196: 117334. https://doi.org/10.1016/j.applthermaleng.2021.117334

Adachi T, Chang X, Nagai H, Takahashi S. Numerical investigation on necessary condition for temperature oscillation in loop heat pipe. Int J Therm Sci. 2024; 196: 108704. https://doi.org/10.1016/j.ijthermalsci.2023.108704

Maghrabie HM, Olabi AG, Alami AH, Radi M Al, Zwayyed F, Salamah T, et al. Numerical simulation of heat pipes in different applications. Int J Thermofluids. 2022; 16: 100199. https://doi.org/10.1016/j.ijft.2022.100199

Daimaru T, Nagai H, Ando M, Tanaka K, Okamoto A, Sugita H. Comparison between numerical simulation and on-orbit experiment of oscillating heat pipes. Int J Heat Mass Transf. 2017; 109: 791-806. https://doi.org/10.1016/j.ijheatmasstransfer.2017.01.078

Zhao J, Wu C, Rao Z. Numerical study on heat transfer enhancement of closed loop oscillating heat pipe through active incentive method. Int Commun Heat Mass Transfer. 2020; 115: 104612. https://doi.org/10.1016/j.icheatmasstransfer.2020.104612

Vo D-T, Kim H-T, Ko J, Bang K-H. An experiment and three-dimensional numerical simulation of pulsating heat pipes. Int J Heat Mass Transf. 2020; 150: 119317. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119317

Daimaru T, Yoshida S, Nagai H. Study on thermal cycle in oscillating heat pipes by numerical analysis. Appl Therm Eng. 2017; 113: 1219-27. https://doi.org/10.1016/j.applthermaleng.2016.11.114

On-ai K, Kammuang-lue N, Terdtoon P, Sakulchangsatjatai P. Implied physical phenomena of rotating closed-loop pulsating heat pipe from working fluid temperature. Appl Therm Eng. 2019; 148: 1303-9. https://doi.org/10.1016/j.applthermaleng.2018.11.030

Qian N, Jiang F, Marengo M, Chen J, Fu Y, Zhang J, et al. Start-up behavior of oscillating heat pipe in grinding wheel under axial-rotation conditions. Appl Therm Eng. 2023; 219: 119443. https://doi.org/10.1016/j.applthermaleng.2022.119443

Qian N, Fu Y, Zhang Y, Chen J, Xu J. Experimental investigation of thermal performance of the oscillating heat pipe for the grinding wheel. Int J Heat Mass Transf. 2019; 136: 911-23. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.065

Czajkowski C, Nowak AI, Ochman A, Pietrowicz S. Flower shaped oscillating heat pipe at the thermosyphon condition: Performance at different rotational speeds, filling ratios, and heat supplies. Appl Therm Eng. 2022; 212: 118540. https://doi.org/10.1016/j.applthermaleng.2022.118540

Czajkowski C, Nowak AI, Pietrowicz S. Flower shape oscillating heat pipe – A novel type of oscillating heat pipe in a rotary system of coordinates – An experimental investigation. Appl Therm Eng. 2022; 179: 115702. https://doi.org/10.1016/j.applthermaleng.2020.115702

Qian N, Fu Y, Jiang F, Ding W, Zhang J, Xu J. CBN grain wear during eco-benign grinding of nickel-based superalloy with oscillating heat pipe abrasive wheel. Ceram Int. 2022; 48: 9692-701. https://doi.org/10.1016/j.ceramint.2021.12.170

Qian N, Fu Y, Chen J, Khan AM, Xu J. Axial rotating heat-pipe grinding wheel for eco–benign machining: A novel method for dry profile-grinding of Ti–6Al–4V alloy. J Manuf Process. 2020; 56: 216–27. https://doi.org/10.1016/j.jmapro.2020.03.023

Ebrahimi Dehshali M, Nazari MA, Shafii MB. Thermal performance of rotating closed-loop pulsating heat pipes: Experimental investigation and semi-empirical correlation. Int J Therm Sci. 2018; 123: 14-26. https://doi.org/10.1016/j.ijthermalsci.2017.09.009

Czajkowski C, Błasiak P, Rak J, Pietrowicz S. The development and thermal analysis of a U-shaped pulsating tube operating in a rotating system of coordinates. Int J Therm Sci. 2018; 132: 645-62. https://doi.org/10.1016/j.ijthermalsci.2018.07.002

Aboutalebi M, Nikravan Moghaddam AM, Mohammadi N, Shafii MB. Experimental investigation on performance of a rotating closed loop pulsating heat pipe. Int J Heat Mass Transf. 2013; 45: 137-45. https://doi.org/10.1016/j.icheatmasstransfer.2013.04.008

Kammuang-lue N, Patanathabutr C, Sakulchangsatjatai P, Terdtoon P. Thermal characteristics of rotating closed-loop pulsating heat pipe designed for rotating-type energy storage devices. Energy Rep. 2022; 8: 302-8. https://doi.org/10.1016/j.egyr.2022.10.206

Liou T-M, Chang SW, Cai WL, Lan I-A. Thermal fluid characteristics of pulsating heat pipe in radially rotating thin pad. Int J Heat Mass Transf. 2019; 131: 273-90. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.132

Jang DS, Cho W, Ham SH, Kim Y. Thermal spreading characteristics of novel radial pulsating heat pipes with diverging nonuniform channels. Int J Heat Mass Transf. 2022; 199: 123488. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123488

Chen X, Liu X, Xu D, Chen Y. Thermal performance of a tandem-dual-channel flat-plate pulsating heat pipe applicable to hypergravity. Int J Heat Mass Transf. 2022; 189: 122656. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122656

Chen X, Chen S, Zhang Z, Sun D, Liu X. Heat transfer investigation of a flat-plate oscillating heat pipe with tandem dual channels under nonuniform heating. Int J Heat Mass Transf. 2021; 180: 121830. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121830

Qian N, Jiang F, Marengo M, Fu Y, Xu J. Thermal performance of a radial-rotating oscillating heat pipe and its application in grinding processes with enhanced heat transfer. Appl Therm Eng. 2023; 233: 121213. https://doi.org/10.1016/j.applthermaleng.2023.121213

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Jiaren Wang, Ning Qian, Yucan Fu