Mathematical Modelling and Numerical Simulation of Hydrodynamics with Flood Mitigation Strategies in the Mayo-Danay Department of Cameroon's Far North Region
Abstract - 62
PDF

Keywords

Flood risk modelling
Real-time rainfall data
Dyke breach scenarios
Hydrodynamic simulation
Integrated drainage systems
Territorial resilience strategies
Topographic vulnerability mapping

How to Cite

Christophe, K. W., Olivier, L., & Andre, A. (2025). Mathematical Modelling and Numerical Simulation of Hydrodynamics with Flood Mitigation Strategies in the Mayo-Danay Department of Cameroon’s Far North Region. Journal of Advances in Applied & Computational Mathematics, 12, 13–28. https://doi.org/10.15377/2409-5761.2025.12.2

Abstract

Flooding is the main structural problem faced by the Mayo-Danay department in the Far North Region of Cameroon, aggravated by climate change impacts, upstream deforestation, and the development and lack of maintenance of hydraulic infrastructure. This paper presents a new approach to develop a two-dimensional mathematical modelling combined with an advanced numerical simulation of hydrodynamics along the Logone River. The key originality aspect of this work lies in incorporating dynamic dyke breach scenarios together with seasonal real-time rainfall data allowing accurate flood propagation prediction at vital intervals. Flood risk mapping involves combining hydrodynamic behavior with topographic vulnerability parameters thus revealing areas under high risk. Detailed post-judgment analysis on Logone earthen dyke breach shows its highly destructive potential thereby emphasizing quite strongly the necessity for prevention strategies. Additionally, it evaluates sanitation infrastructure coupled with stormwater management through integrated urban drainage systems within this context. A preamble to what must be conceived as an exhaustive agenda for action is given by some recommendations: strengthening up Kousseri of the hydrometeorological network; satellite data and local observations complementing early warning systems; sustainable approaches that are reforested and integrated watershed managements done in parallelism with one another. The innovation lies in sophisticated digital and geospatial methodologies associated with territorial resilience strategies tailored to sub-Saharan contexts; this can be applied elsewhere where similar hydrological dynamics occur, thus providing a sound basis for scientific as well as political decision-making.

https://doi.org/10.15377/2409-5761.2025.12.2
PDF

References

Bang H, Miles L, Gordon R. Evaluating local vulnerability and organisational resilience to frequent flooding in Africa: the case of Northern Cameroon. Foresight. 2019; 21(2): 266-84. https://doi.org/10.1108/FS-06-2018-0068

Leumbe O, Bitom D, Mamdem L, Tiki D, Ibrahim A. Cartographie des zones à risques d'inondation en zone soudano-sahélienne : cas de Maga et ses environs dans la région de l'extrême-nord Cameroun. Afr Sci Rev Int Sci Technol. 2015; 11(3): 45-61.

Saborío-Bejarano J, Mora-Castro S. Evaluation de l'état du barrage, des digues, du réservoir et des structures hydrauliques du système de Maga-Logone-Vrick. Rapport technique. 2012. Available from: http://www.drrinacp.org/sites/drrinacp.org/files/publication/

Cameroon_Technical_evaluation_dam.pdf (Accessed on April 30, 2025).

Su YH, Li CC. Stability analysis of slope based on Green-Ampt model under heavy rainfall. Rock Soil Mech. 2020; 41(2): 389-98. https://doi.org/10.16285/j.rsm.2019.5001

Nazarov M, Hoffman J. Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods. Int J Numer Meth Fluids. 2013; 71(3): 339-57. https://doi.org/10.1002/fld.3663

Chorin AJ, Marsden JE. A Mathematical Introduction to Fluid Mechanics. 3e ed. New York: Springer-Verlag; 1992. https://doi.org/10.1007/978-1-4612-0883-9

Hoffman J. Adaptive simulation of the subcritical flow past a sphere. J Fluid Mech. 2006; 568: 77-88. https://doi.org/10.1017/S0022112006002679

Hall J, Tarantola S, Bates P, Horritt M. Distributed sensitivity analysis of flood inundation model calibration. J Hydraul Eng. 2005; 131(2): 117-26. https://doi.org/10.1061/(ASCE)0733-9429(2005)131:2(117)

Khraisheh M, Dawas N, Nasser MS, Al-Marri MJ, Hussien MA, Adham S, et al. Osmotic pressure estimation using the Pitzer equation for forward osmosis modelling. Environ Technol. 2020; 41(19): 2533-45. https://doi.org/10.1080/09593330.2019.1575476

Olsen AS, Zhou Q, Linde JJ, Arnbjerg-Nielsen K. Comparing methods of calculating expected annual damage in urban pluvial flood risk assessments. Water. 2015; 7(1): 255-70. https://doi.org/10.3390/w7010255

Ma S, Hanssen FCW, Siddiqui MA, Greco M, Faltinsen OM. Local and global properties of the harmonic polynomial cell method: In-depth analysis in two dimensions. Int J Numer Methods Eng. 2018; 113(5): 681-718. https://doi.org/10.1002/nme.5631

Tügel F, Hassan A, Hou J, Hinkelmann R. Applicability of literature values for Green-Ampt parameters to account for infiltration in hydrodynamic rainfall-runoff simulations in ungauged basins. Environ Model Assess. 2021; 27: 205-31. https://doi.org/10.1007/s10666-021-09788-0

Ngondiep E. A robust time-split linearized explicit/implicit technique for two-dimensional hydrodynamic model: an application to floods in Cameroon far north region. arXiv preprint arXiv: 2411.17740. 2024.arXiv+1arXiv+1. https://doi.org/10.1063/5.0254027

Djomdi E, Aretouyap Z, Feujio D, Ngog CN II, Nguimfack C, Ndinchout A, et al. Investigation of the recurrent flash flood events in the Far-North Region of Cameroon. Earth Sci Inform. 2024; 17: 4969-90. https://doi.org/10.1007/s12145-024-01442-z

Iroume JYA, Onguéné R, Djanna Koffi F, Colmet-Daage A, Stieglitz T, Essoh Sone W, et al. The 21st August 2020 Flood in Douala (Cameroon): A Major Urban Flood Investigated with 2D HEC-RAS Modeling. Water. 2022;14(11):1768. https://doi.org/10.3390/w14111768

Delestre O, Cordier S, Darboux F, Du M, James F, Laguerre C, et al. FullSWOF: A software for overland flow simulation. arXiv preprint arXiv:1204.3210. 2012.arXiv. https://doi.org/10.1007/978-981-4451-42-0_19

Tasseff B, Bent R, Van Hentenryck P. Optimization of Structural Flood Mitigation Strategies. arXiv preprint arXiv:1803.00457. 2018.arXiv. https://doi.org/10.1029/2018WR024362

Mafai NM, Mustapha H, Hubert F. Towards a 3D web tool for visualization and simulation of urban flooding: The case of metropolitan cities in Cameroon. Int J Appl Sci Eng Rev. 2023; 4(4): 25-40. https://doi.org/10.52267/IJASER.2023.4403

Wiryanto LH, Widyawati R. Numerical simulation of flood routing, model of dynamic equations. J Indones Math Soc. 2022; 28(2): 122-32. https://doi.org/10.22342/jims.28.2.1111.122-132

CaMa-Flood: Global River Hydrodynamics Model. Last update November 22, 2024. Available from: https://hydro.iis.u-tokyo.ac.jp/~yamadai/cama-flood/ (Accessed on April 30, 2025).

Ngondiep E. A combined Lax-Wendroff/interpolation approach with finite element method for a three-dimensional system of tectonic deformation model: application to landslides in Cameroon. arXiv preprint arXiv:2502.07797.2025.arXiv. https://doi.org/10.48550/arXiv.2502.07797

Guedjeo CS, Kagou DA, Ngapgue F, Nkouathio DG, Zangmo TG, Gountié DM, et al. Flood risks and community resilience across the five agroecological zones of Cameroon: Reality and Perspectives. In: Volume I: Development and Environmental Dynamics. Conf Proc. 2013; 2(1): 246-66.

Ibrahim BA, Tiki D, Mamdem L, Leumbe OL, Bitom D, Lazar G. Multicriteria analysis (MCA) approach and GIS for flood risk assessment and mapping in Mayo Kani division, Far North region of Cameroon. Int J Adv Remote Sens GIS. 2018; 7: 2793-808. https://doi.org/10.23953/cloud.ijarsg.375

Bouba L, Ayral PA, Sauvagnargues S. Landscape drivers of floods genesis (case study: Mayo Mizao peri-urban watershed in Far North Cameroon). Water 2024; 16(12): 1672. https://doi.org/10.3390/w16121672

Abba Ari AA, Dtissibe FY, Ndam Njoya A, Abboubakar H, Gueroui AM, Thiare O, et al. Flood forecasting in the Far-North region of Cameroon: a comparative study of machine learning and deep learning methods. In: Woungang I, Dhurandher SK, Eds. The 6th International Conference on Wireless, Intelligent and Distributed Environment for Communication (WIDECOM 2023). Lect Notes Data Eng Commun Technol 2023; 185: 151-66. https://doi.org/10.1007/978-3-031-47126-1_10

Tamiru H, Dinka MO. Application of ANN and HEC-RAS model for flood inundation mapping in lower Baro Akobo river basin, Ethiopia. J Hydrol Reg Stud. 2021; 36: 100855. https://doi.org/10.1016/j.ejrh.2021.100855

Gao G, Li Y, Li J, Zhou X, Zhou Z. A hybrid model for short-term rainstorm forecasting based on a back-propagation neural network and synoptic diagnosis. Atmos Oceanic Sci Lett. 2021; 14(5): 100053. https://doi.org/10.1016/j.aosl.2021.100053

Nevo S, Morin E, Gerzi Rosenthal A, Metzger A, Barshai C, Weitzner D, et al. Flood forecasting with machine learning models in an operational framework. Hydrol Earth Syst Sci. 2022; 26(15): 4013-32. https://doi.org/10.5194/hess-26-4013-2022

Krajewski WF, Ghimire GR, Demir I, Mantilla R. Real-time streamflow forecasting: AI vs. hydrologic insights. J Hydrol X. 2021; 13: 100110. https://doi.org/10.1016/j.hydroa.2021.100110

UNISDR. Global assessment report on disaster risk reduction. United Nations Office for Disaster Risk Reduction (UNISDR), Geneva; 2019.

Wanie CM, Ndi RA. Governance issues constraining the deployment of flood resilience strategies in Maroua, Far North Region of Cameroon. Disaster Prev Manag. 2018; 27(2): 175-92. https://doi.org/10.1108/DPM-12-2017-0300

Bouba L, Sauvagnargues S, Gonné B, Ayral P-A, Ombolo A. Trends in rainfall and flood hazard in the Far North region of Cameroon. Geo-Eco-Trop. 2017; 41(3): 339-58.

Ndongo B, Mbouendeu LS, Hiregued JP. Impacts socio-sanitaires et environnementaux de la gestion des eaux pluviales en milieu urbain sahélien: Cas de Maroua, Cameroun. Afr Sci. 2015; 11(3): 237-51.

Fotsing E. Small Savannah: An Information System for the Integrated Analysis of Land Use Change in the Far North of Cameroon [Doctoral Thesis]. Leiden: Universiteit Leiden; 2009.

FAO. Anticipatory action helps flood-affected communities in Cameroon's Far North. 2023 May 25. Available from: https://www.fao.org/newsroom/story/Anticipatory-action-helps-flood-affected-communities-in-Cameroon-s-Far-North/.FAOHome+1United Nations Cameroon+1 (Accessed on April 30, 2025).

World Bank. Cameroon to Improve Infrastructure and Climate Resilience in the Far North Region. Press Release 2023 Jun 21. Available from: https://www.worldbank.org/en/news/press-release/2023/06/21/cameroon-to-improve-infrastructure-and-climate-resilience-in-the-far-north-region (Accessed on April 30, 2025).

Crisis Group. Curbing Feuds over Water in Cameroon's Far North. 2023. Available from: https://www.crisisgroup.org/africa/central-africa/cameroon/b197-curbing-feuds-over-water-cameroons-far-north (Accessed on April 30, 2025).

World Bank. Saving Lives and Livelihoods through Flood Protection in Cameroon. 2021 Jul 6. Available from: https://www.worldbank.org/en/news/feature/2021/07/06/saving-lives-and-livelihoods-through-flood-protection-in-cameroon (Accessed on April 30, 2025).

World Bank. Flood Management in the Far North of Cameroon: With the Rehabilitation of Logone Dyke and Maga Dam, Local Families Are No Longer Afraid of Heavy Rains. 2020 Nov 10. Available from: https://www.worldbank.org/en/results/2020/11/10/flood-management-in-the-far-north-of-cameroon (Accessed on April 30, 2025).

Dtissibe FY, Ari AAA, Titouna C, Thiare O, Gueroui AM. Flood Forecasting in the Far-North Region of Cameroon: A Comparative Study of Machine Learning and Deep Learning Methods. In: Woungang I, Dhurandher SK, Eds. The 6th International Conference on Wireless, Intelligent and Distributed Environment for Communication. WIDECOM 2023. Lecture Notes on Data Engineering and Communications Technologies, vol 185. Springer, Cham; 2024. https://doi.org/10.1007/978-3-031-47126-1_10

Gbohoui YP, Paturel J-E, Fowe T, Karambiri H, Yacouba H. Impacts of climate and environmental changes on the hydrological response of the Nakanbé basin in Wayen (Burkina Faso) through the budyko framework. Proc IAHS. 2021; 384: 269-73. https://doi.org/10.5194/piahs-384-269-2021

Brandt M, Rasmussen K, Peñuelas J, Tian F, Schurgers G, Verger A, et al. Human population growth offsets climate-driven increase in woody vegetation in sub-Saharan Africa. Nat Ecol Evol. 2017; 1: 0081. https://doi.org/10.1038/s41559-017-0081

CILSS. Les Paysages de l'Afrique de l'Ouest: Une Fenêtre sur un Monde en Pleine Évolution. Garretson, SD: U.S. Geological Survey EROS; 2016.

Akamba GY, Ateba JB, Dzana JG. Hydrogeomorphology and flood mapping in the Bénué Plain (North-Cameroon). Géomorphologie: Relief, Processus, Environnement. 2019; 25(3): 195-208.

Waza Logone floodplain. In: Wikipedia [Internet]. Available from: https://en.wikipedia.org/wiki/Waza_Logone_floodplain (Accessed on April 30, 2025).

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Kikmo Wilba Christophe, Langola Olivier, Abanda Andre

Downloads

Download data is not yet available.