Abstract
Air pollution notably stemming from cement and marble industries has been identified as a significant factor contributing to deteriorating respiratory health in regions of high industrial density. Figuil region in northern Cameroon suffers a disturbing health impact from industrial facilities emitting fine particulate matter and sulphur dioxide heavily. Quantitatively assessing effect of pollutants on health of local populations remains primary objective of this somewhat obscure study mercifully. A mathematical model derived from SEIR model incorporates atmospheric pollutant concentrations as environmental forcing variables rather effectively nowadays. Innovation here integrates environmental epidemiological and demographic data dynamically into a spatio-temporal modelling framework enabling fairly accurate estimation of various exposure risks. Numerical simulations revealed a statistically significant correlation between peaks in PM₂.₅/SO₂ concentrations and increased cases of chronic bronchitis asthma and pneumonia during dry season. Regions near industrial sites show 2.8 times higher health risk compared with areas far away from such polluting facilities. Targeted public health interventions and industrial regulation are badly needed as underscored by these quite revealing data mercifully. Study proposes various mitigation measures including enhanced air quality monitoring around industrial sites and implementation of rather efficient filtration systems.
References
Christophe KW, Njionou SP, Batambock S, Nyatte NJ, Abanda A. Investigating respiratory disease transmission patterns around the Figuil cement works. Math Model Appl. 2024; 9(4): 76-86. https://doi.org/10.11648/j.mma.20240904.11
Ndam J, Bechem RM, Simo B. Air pollution and respiratory health risks in urban Cameroon: a review. Environ Health Insights. 2021; 15: 117863022110116.
World Health Organization. Air pollution and child health: prescribing clean air. Geneva: WHO; 2022.
Takeuchi Y, Adachi N. The existence of globally stable equilibria of ecosystems of the generalized Volterra type. J Math Biol. 1980; 10: 401-15. https://doi.org/10.1007/BF00276098
Nold AH. Heterogeneity in disease transmission modeling. Math Biosci. 1980; 52: 227-40. https://doi.org/10.1016/0025 5564(80)90069 3
Mena Lorca J, Hethcote HW. Dynamic models of infectious diseases as regulators of population sizes. J Math Biol. 1992; 30(7): 693-716. https://doi.org/10.1007/BF00173264
van den Driessche P, Watmough J. Reproduction numbers and sub threshold endemic equilibria for compartmental models of disease transmission. Math Biosci. 2002; 180: 29-48. https://doi.org/10.1016/S0025 5564(02)00108 6
McCluskey CC. Lyapunov functions for tuberculosis models with fast and slow progression. Math Biosci Eng. 2006; 3(4): 603-14. https://doi.org/10.3934/mbe.2006.3.603
Liu WM, Hethcote HW, Levin SA. Dynamical behavior of epidemiological models with nonlinear incidence rates. J Math Biol. 1987; 25(4): 359-80. https://doi.org/10.1007/BF00277162
Li MY, Muldowney JS. Global stability for the SEIR model in epidemiology. Math Biosci. 1995; 125(2): 155-64. https://doi.org/10.1016/0025 5564(95)92756 5
Jacquez JA, Simon CP, Koopman JS. The reproduction number in deterministic models of contagious diseases. Comment Theor Biol. 1991; 2(3): 423-45.
Jacquez JA. Modeling with compartments. Houston (TX): BioMedware; 1999.
Diekmann O, Heesterbeek JAP, Britton T. Mathematical tools for understanding infectious disease dynamics. Princeton, NJ: Princeton University Press; 2013. https://doi.org/10.23943/princeton/9780691155395.001.0001
Tingting Liao, Wanting Jiang, Zhengwu Ouyang, Shixiong Hu, Jiaqi Wu, Bin Zhao, et al. Modeling the health impact of industrial air pollution in China using a modified SEIR model. Atmos Environ. 2016; 141: 73-82.
Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut. 2008; 151(2): 362-7. https://doi.org/10.1016/j.envpol.2007.06.012
Die Li, Jian-bing Wang, Zhen-yu Zhang, Peng Shen, Pei-wen Zheng, Ming-juan Jin, et al. Short term associations of ambient air pollution and cause specific mortality in China: A nationwide time series study. Lancet Planet Health. 2021; 5(9): e404–14.
World Health Organization. Ambient air pollution: a global assessment of exposure and burden of disease. Geneva: WHO; 2023.
Balogun HA, Famuyiwa OO, Ogunseitan OA, Olowoporoku AO, Adeleye AO, Akinyemi JO, et al. Residential proximity to industrial plants and its impact on respiratory health in Nigeria. Int J Environ Res Public Health. 2014;11(10):10517–32. https://doi.org/10.3390/ijerph111010517.
Kim KH, Kabir E, Kabir S. A review on the human health impact of airborne particulate matter. Environ Int. 2015; 74: 136-43. https://doi.org/10.1016/j.envint.2014.10.005
Syed ST, Gerber BS, Sharp LK. Traveling towards disease: transportation barriers to health care access. J Community Health. 2013; 38(5): 976-93. https://doi.org/10.1007/s10900 013 9681 1
Ma J, Zhang Y, Wang X, Li L, Chen Z, Liu H, et al. AERMOD based health risk assessment of PM2.5 near industrial zones in northern China. Sci Total Environ. 2022; 842: 156806. https://doi.org/10.1016/j.scitotenv.2022.156806
European Environment Agency. Air quality in Europe – 2022 report. EEA Report 19/2022.
U.S. Environmental Protection Agency. User's guide for the AMS/EPA regulatory model – AERMOD. EPA 454/B 19 003; 2019.
Hanna SR, Paine RJ. Hybrid modeling approaches for regulatory air quality modeling. Atmos Environ. 2007; 41(40): 8472-83.
Zannetti P. Air pollution modeling: theories, computational methods and available software. New York: Van Nostrand Reinhold; 1990. https://doi.org/10.1007/978 1 4757 4465 1
Pope CA 3rd, Dockery DW. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc. 2006; 56(6): 709-42. https://doi.org/10.1080/10473289.2006.10464485
Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation. 2010; 121(21): 2331-78. https://doi.org/10.1161/CIR.0b013e3181dbece1
Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A, Riahi K, et al. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015; 525(7569): 367-71. https://doi.org/10.1038/nature15371
Burnett RT, Pope CA III, Ezzati M, Olives C, Lim SS, Mehta S, et al. An integrated risk function for estimating the global burden of disease attributable to ambient fine particulate matter exposure. Environ Health Perspect. 2014; 122(4): 397-403. https://doi.org/10.1289/ehp.1307049
Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017; 389(10082): 1907-18. https://doi.org/10.1016/S0140-6736(17)30505-6
He G, Fan M, Zhou M. The effect of air pollution on mortality in China: evidence from the 2008 Beijing Olympic Games. J Environ Econ Manage. 2016; 79: 18-39. https://doi.org/10.1016/j.jeem.2016.04.004
Dominici F, Peng RD, Bell ML, Pham L, McDermott A, Zeger SL, et al. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA. 2006; 295(10): 1127-37. https://doi.org/10.1001/jama.295.10.1127
Viana M, Hammingh P, Colette A, Querol X, Degraeuwe B, de Vlieger I, van Aardenne J, et al. Impact of maritime emissions on coastal air quality in Europe. Atmos Environ. 2014; 90: 96-105. https://doi.org/10.1016/j.atmosenv.2014.03.046
Querol X, Alastuey A, Viana M, Cuevas E, Pandolfi M, Moreno T, et al. Variability in levels of particulate matter across a European city network. Atmos Environ. 2004; 38(38): 6547-55. https://doi.org/10.1016/j.atmosenv.2004.08.037
Khreis H, Kelly C, Tate J, Parslow R, Lucas K, Nieuwenhuijsen M, et al. Exposure to traffic related air pollution and risk of development of childhood asthma: a systematic review and meta-analysis. Environ Int. 2017; 100: 1-31. https://doi.org/10.1016/j.envint.2016.11.012
Wang S, Hao J. Air quality management in China: issues, challenges, and options. J Environ Sci. 2012; 24(1): 2-13. https://doi.org/10.1016/S1001 0742(11)60724 9
Bai L, Zhang X, Wang Y, Li J, Chen H, Zhao Q, et al. Exposure to air pollution and influenza hospitalizations in China: a nationwide time series study. Environ Int. 2020; 139: 105691. https://doi.org/10.1016/j.envint.2020.105691
Anderson JO, Thundiyil JG, Stolbach A. Clearing the air: a review of the effects of particulate matter air pollution on human health. J Med Toxicol. 2012; 8(2): 166-75. https://doi.org/10.1007/s13181 011 0203 1
Kumar P, Morawska L, Martani C, Biskos G, Neophytou M, Di Sabatino S, et al. The rise of low cost sensing for managing air pollution in cities. Environ Int. 2015; 75: 199-205. https://doi.org/10.1016/j.envint.2014.11.019
Zhang J, Smith KR. Household air pollution from coal and biomass fuels in China: measurements, health impacts, and interventions. Environ Health Perspect. 2007; 115(6): 848-55. https://doi.org/10.1289/ehp.9479
Zhao B, Wang S, Xing J, Wu Y, Liu H, Hao J, et al. Decadal changes in PM2.5 concentrations in major Chinese cities from 2000 to 2015. Environ Int. 2018; 117: 267-77. https://doi.org/10.1016/j.envint.2018.05.012
Guo Y, Gasparrini A, Armstrong B, Li S, Tawatsupa B, Tobias A, et al. Global variation in the effects of ambient temperature on mortality: a systematic evaluation. Epidemiology. 2014; 25(6): 781-91. https://doi.org/10.1097/EDE.0000000000000165
Pope CA, Dockery DW. Air pollution and life expectancy in China and beyond. Proc Natl Acad Sci U S A. 2013; 110(32): 12861-2. https://doi.org/10.1073/pnas.1310925110
Liu Y, Zhu J, Ye C, Zhu P, Ba Q, Pang J, et al. Improving model performance for air pollution exposure assessment in China by fusion of ground based measurements and satellite observations. Sci Total Environ. 2018; 626: 1443-53. https://doi.org/10.1016/j.scitotenv.2018.01.003
Lim SS, Vo T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors in 21 regions, 1990–2010. Lancet. 2012; 380(9859): 2224-60. https://doi.org/10.1016/S0140 6736(12)61766 8
Guttikunda SK, Jawahar P. Atmospheric emissions and pollution from the coal fired thermal power plants in India. Atmos Environ. 2014; 92: 449-60. https://doi.org/10.1016/j.atmosenv.2014.04.057
Di Q, Wang Y, Zanobetti A, Wang Y, Koutrakis P, Choirat C, et al. Air pollution and mortality in the Medicare population. N Engl J Med. 2017; 376(26): 2513-22. https://doi.org/10.1056/NEJMoa1702747
Hoek G, Krishnan RM, Beelen R, Peters A, Ostro B, Brunekreef B, et al. Long term air pollution exposure and cardio respiratory mortality: a review. Environ Health. 2013; 12(1): 43. https://doi.org/10.1186/1476 069X 12 43
Lelieveld J, Evans J, Fnais M, Giannadaki D, et al. Thie contribution of outdoor air pollution sources to premature mortality on a global scale. Nature. 2015; 525(7569): 367-71. https://doi.org/10.1038/nature15371
Shaddick G, Thomas ML, Jobling A, Brauer M, van Donkelaar A, Burnett R, et al. Data integration model for air quality: a hierarchical approach to the global estimation of exposures to ambient air pollution. J R Stat Soc Ser C Appl Stat. 2018; 67(1): 231-53. https://doi.org/10.1111/rssc.12227

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2025 Kikmo Wilba Christophe, Abanda Andre