Determination of Director Angle for Flow Aligning Nematic Liquid Crystals under Couette Geometry

Authors

  • Bagisa Mukherjee Penn State University, Dunmore, PA 18512, USA

DOI:

https://doi.org/10.15377/2409-5761.2016.03.01.1

Keywords:

Nematic liquid crystals, couette two, ericksen-leslie model

Abstract

We consider steady state flow of nematic liquid crystals in a Couette geometry driven by the relative rotation of the two concentric cylinders. We use the standard Ericksen-Leslie continuum model. The director, a unit vector, represents the average molecular orientation. We assume strong anchoring conditions at the walls of the flow which fixes the director orientation, and find an explicit expression of the director angle as a function of its distance from the common axis of the rotating cylinders.

Downloads

Download data is not yet available.

Author Biography

  • Bagisa Mukherjee, Penn State University, Dunmore, PA 18512, USA
    Department of Mathematics, Worthington Scranton Campus

References

Calderer MC and Mukherjee B. On Poiseuille flow of liquid crystals, Liquid Crystals 1997; 22: 121-135. http://dx.doi.org/10.1080/026782997209487 DOI: https://doi.org/10.1080/026782997209487

Calderer MC and Mukherjee B. Some mathematical issues in the modeling of flow phenomena of polymeric Liquid crystals. J Rheology 1998; 42: 1519-1536. http://dx.doi.org/10.1122/1.550931 DOI: https://doi.org/10.1122/1.550931

Calderer MC and Liu C. Liquid crystal flow: dynamic and static configurations. SIAM J Appl Math 2000; 60-6. DOI: https://doi.org/10.1137/S0036139998336249

Cladis PE and Torza S. Stability of Nematic Liquid crystals in Couette Flow. Phys Rev Lett 1975; 35: 1283-1286. http://dx.doi.org/10.1103/PhysRevLett.35.1283 DOI: https://doi.org/10.1103/PhysRevLett.35.1283

de Gennes PG and Prost J. The physics of liquid crystals. Oxford Science Publications, Oxford 1993.

Ericksen J. Conservation laws for liquid crystals. Trans Soc Rheol 1961; 5: 22-34. http://dx.doi.org/10.1122/1.548883 DOI: https://doi.org/10.1122/1.548883

Ericksen J. Continuum theory of nematic liquid crystals. Res Mechanica 1987; 21: 381-392.

Ericksen J. Liquid crystals with variable degree of orientation. Arch Ration Mech Anal 1991; 113: 97-120. http://dx.doi.org/10.1007/BF00380413 DOI: https://doi.org/10.1007/BF00380413

Leslie F. Some constitutive equations for liquid crystals. Arch Ration Mech Anal 1968; 28: 265-283. http://dx.doi.org/10.1007/BF00251810 DOI: https://doi.org/10.1007/BF00251810

Leslie F. Theory of flow phenomena in liquid crystals. The Theory of Liquid Crystals, 4, Academic Press 1979: 1-81. DOI: https://doi.org/10.1016/B978-0-12-025004-2.50008-9

Lin FH and Liu C. Existence of solutions for the Ericksen- Leslie system. Arch Ration Mech Anal 2000; 154(2): 135-156. http://dx.doi.org/10.1007/s002050000102 DOI: https://doi.org/10.1007/s002050000102

Oseen CW. Trans. Faraday Soc 1991; 29: 883. http://dx.doi.org/10.1039/tf9332900883 DOI: https://doi.org/10.1039/tf9332900883

Pieranski P and Guyon E. Two shear-flow regimes in p-n- Hexyloxybenzilidene-p0-aminobenzonitrile. Phys. Rev. Lett 1974; 32(17): 924-926. http://dx.doi.org/10.1103/PhysRevLett.32.924 DOI: https://doi.org/10.1103/PhysRevLett.32.924

Stewart IW. The static and dynamic continuum theory of liquid crystals Taylor and Francis 2004.

Ch. Hoffmann et al. Nonlinear Defects Separating Spiral Waves in Taylor-Couette Flow. Phys Rev E 80 066308, 2009; 1-8. (DOI: 10.1103/PhysRevE.80.066308). DOI: https://doi.org/10.1103/PhysRevE.80.066308

Downloads

Published

2016-06-16

Issue

Section

Articles

How to Cite

Determination of Director Angle for Flow Aligning Nematic Liquid Crystals under Couette Geometry. (2016). Journal of Advances in Applied & Computational Mathematics, 3(1), 1-3. https://doi.org/10.15377/2409-5761.2016.03.01.1

Similar Articles

31-33 of 33

You may also start an advanced similarity search for this article.