Review of Recyclable Bio-based Epoxy Resins with Dynamic Chemical Bonds
Abstract - 422
PDF

Keywords

Recyclable
Degradable
Reprocess able
Bio-based epoxy resin
Dynamic chemical bond

How to Cite

1.
Wan M, Liu X, Zhang Y. Review of Recyclable Bio-based Epoxy Resins with Dynamic Chemical Bonds. J. Chem. Eng. Res. Updates. [Internet]. 2024 Jun. 21 [cited 2025 Jan. 22];11:1-28. Available from: https://avantipublishers.com/index.php/jceru/article/view/1524

Abstract

Epoxy thermosetting resins are usually reliant on fossil fuel-based resources, commonly diglycidyl ether bisphenol A (DGEBA) type epoxy monomers. Most raw materials of these thermoset resin are toxic to the health of human, and their eternal cross-links make them difficult to reuse and recycle. To alleviate concerns about the environment and human health, it is an effective way to design new bio-based epoxy thermosetting materials to replace petroleum based thermosetting materials. The introduction of cleavable and dynamic bonds for bio-based thermosetting materials can also realize the recycling of bio-based epoxy resin. In this way, the damaged thermosetting materials can be recovered to prolong their service lifetime and reduce the thermosetting waste. This review article aims to outline the latest improvements in intrinsically recyclable bio-based epoxy thermosetting materials. This review first describes the synthesis method of recyclable bio-based epoxy, then reviews the structure, recyclable and other properties of bio-based epoxy containing different dynamic bonds, and finally summarizes the challenges and opportunities for the recyclable bio-based epoxy.

https://doi.org/10.15377/2409-983X.2024.11.1
PDF

References

Zhang C, Xue J, Yang X, Ke Y, Ou R, Wang Y, et al. From plant phenols to novel bio-based polymers. Prog Polym Sci. 2022; 125: 101473. https://doi.org/10.1016/j.progpolymsci.2021.101473

Wan J, Zhao J, Zhang X, Fan H, Zhang J, Hu D, et al. Epoxy thermosets and materials derived from bio-based monomeric phenols: Transformations and performances. Progress in Polymer Science, 2020; 108: 101287. https://doi.org/10.1016/j.progpolymsci.2020.101287

Liu J, Peng Y, Zhao W, Jiang Y, Liu X. Research progress of bio-based thermal resin. Thermosetting Resin. 2020; 35: 60-70.

Jin FL, Li X, Park SJ. Synthesis and application of epoxy resins: A review. J Ind Eng Chem. 2015; 29: 1-11. https://doi.org/10.1016/j.jiec.2015.03.026

Baroncini EA, Yadav SK, Palmese GP, Stanzione JF. Recent advances in bio-based epoxy resins and bio-based epoxy curing agents. J Appl Polym Sci. 2016; 133: 44103. https://doi.org/10.1002/app.44103

Liu J, Zhang L, Shun W, Dai J, Peng Y, Liu X. Recent development on bio-based thermosetting resins. J Polym Sci. 2021; 59: 1474-90. https://doi.org/10.1002/pol.20210328

Li Y, Wu Y, Li K, Lin H, Wang M, Zheng L, et al. Recycling of epoxy resins with degradable structures or dynamic cross-linking networks: a review. Ind Eng Chem Res. 2024; 63: 5005-27. https://doi.org/10.1021/acs.iecr.3c03897

Saccani A, Manzi S, Lancellotti I, Lipparini L. Composites obtained by recycling carbon fibre/epoxy composite wastes in building materials. Constr Build Mater. 2019; 204: 296-302. https://doi.org/10.1016/j.conbuildmat.2019.01.216

Lorwanishpaisarn N, Kasemsiri P, Srikhao N, Son C, Kim S, Theerakulpisut S, et al. Carbon fiber/epoxy vitrimer composite patch cured with bio-based curing agents for one-step repair metallic sheet and its recyclability. J Appl Polym Sci. 2021; 138: 1-12. https://doi.org/10.1002/app.51406

Kumar S, Samal SK, Mohanty S, Nayak SK. Recent development of bio-based epoxy resins: a review. Polym Plast Technol Mater. 2016; 57: 133-55. https://doi.org/10.1080/03602559.2016.1253742

Zhu Y, Romain C, Williams CK. Sustainable polymers from renewable resources. Nature. 2016; 540(7633): 354-62. https://doi.org/10.1038/nature21001

Gonçalves FAMM, Santos M, Cernada TS, Ferreira P, Alves P. Advances in the development of biobased epoxy resins: insight into more sustainable materials and future applications. Int Mater Rev. 2021; 67: 119-49. https://doi.org/10.1080/09506608.2021.1915936

Zhong J, Huang Y, Chen Y, Li L, Guo C. Synthesis of eugenol-modified epoxy resin and application on wood flame retardant coating. Ind Crops Prod. 2022; 183: 11479. https://doi.org/10.1016/j.indcrop.2022.114979

Qi Y, Weng Z, Kou Y, Song L, Li J, Wang J, et al. Synthesize and introduce bio-based aromatic s-triazine in epoxy resin: Enabling extremely high thermal stability, mechanical properties, and flame retardancy to achieve high-performance sustainable polymers. Chem Eng J. 2021; 406: 126881. https://doi.org/10.1016/j.cej.2020.126881

Zhang Y, Zhang X, Wang P, Liu Y, Wan M, Zhang K. Phosphorus-free curcumin-derived epoxy resin with exceptional flame retardancy, glass transition temperature and mechanical properties. Polym Degrad Stab. 2023; 215: 110440. https://doi.org/10.1016/j.polymdegradstab.2023.110440

Liu Z, Zhu X, Tian Y, Zhou K, Cheng J, Zhang J. Bio-based recyclable Form-Stable phase change material based on thermally reversible Diels–Alder reaction for sustainable thermal energy storage. Chem Eng J. 2022; 448: 137749. https://doi.org/10.1016/j.cej.2022.137749

Liu J, Liu X, Cui X, Qin J, Wu M, Fu L, et al. Investigation on the properties and structures of resveratrol-derived epoxy thermosets cured with an active ester. Polym Chem. 2023; 14: 1665-79. https://doi.org/10.1039/D2PY01579J

Marotta A, Faggio N, Ambrogi V, Mija A, Gentile G, Cerruti P. Biobased furan-based epoxy/TiO2 nanocomposites for the preparation of coatings with improved chemical resistance. Chem Eng J. 2021; 406: 127107. https://doi.org/10.1016/j.cej.2020.127107

Gao TY, Wang FD, Xu Y, Wei CX, Zhu SE, Yang W, et al. Luteolin-based epoxy resin with exceptional heat resistance, mechanical and flame retardant properties. Chem Eng J. 2022; 428: 131173. https://doi.org/10.1016/j.cej.2021.131173

Xie W, Huang S, Tang D, Liu S, Zhao J. Biomass-derived Schiff base compound enabled fire-safe epoxy thermoset with excellent mechanical properties and high glass transition temperature. Chem Eng J. 2020; 394: 123667. https://doi.org/10.1016/j.cej.2019.123667

Qi Y, Wang J, Kou Y, Pang H, Zhang S, Li N, et al. Synthesis of an aromatic N-heterocycle derived from biomass and its use as a polymer feedstock. Nat Commun. 2019; 10: 2107: 10178. https://doi.org/10.1038/s41467-019-10178-0

Oh Y, Lee KM, Jung D, Chae JA, Kim HJ, Chang M, et al. Sustainable, naringenin-based thermosets show reversible macroscopic shape changes and enable modular recycling. ACS Macro Lett. 2019; 8: 239-44. https://doi.org/10.1021/acsmacrolett.9b00008

Xie W, Huang S, Liu S, Zhao J. Imine-functionalized biomass-derived dynamic covalent thermosets enabled by heat-induced self-crosslinking and reversible structures. Chem Eng J. 2021; 404: 126598. https://doi.org/10.1016/j.cej.2020.126598

Qian Z, Xiao Y, Zhang X, Li Q, Wang L, Fu F, et al. Bio-based epoxy resins derived from diphenolic acid via amidation showing enhanced performance and unexpected autocatalytic effect on curing. Chem Eng J. 2022; 435: 135022. https://doi.org/10.1016/j.cej.2022.135022

Ye J, Ma S, Wang B, Chen Q, Huang K, Xu X, et al. High-performance bio-based epoxies from ferulic acid and furfuryl alcohol: synthesis and properties. Green Chem. 2021; 23: 1772-81. https://doi.org/10.1039/D0GC03946B

Falco G, Sbirrazzuoli N, Mija A. Biomass derived epoxy systems: From reactivity to final properties. Mater Today Commun. 2019; 21: 100683. https://doi.org/10.1016/j.mtcomm.2019.100683

Gonçalves FAMM, Ferreira P, Alves P. Synthesis and characterization of itaconic-based epoxy resin: Chemical and thermal properties of partially biobased epoxy resins. Polymer. 2021; 235: 124285. https://doi.org/10.1016/j.polymer.2021.124285

Yan X, Liu T, Hao C, Shao L, Chang YC, Cai Z, et al. Rosin derived catalyst-free vitrimer with hydrothermal recyclability and application in high performance fiber composite. Ind Crops Prod. 2023; 202: 116976. https://doi.org/10.1016/j.indcrop.2023.116976

Guo W, Wang X, Huang J, Cai W, Song L, Hu Y. Intrinsically anti-flammable and self-toughened phosphorylated cardanol-derived novolac epoxy thermosets. Ind Crops Prod. 2021; 166: 113496. https://doi.org/10.1016/j.indcrop.2021.113496

Liu Y, Yu Z, Wang B, Li P, Zhu J, Ma S. Closed-loop chemical recycling of thermosetting polymers and their applications: a review. Green Chem. 2022; 24: 5691-708.

Fei X, Jia Y, Yang R, Lu G, Ma Y. Research progress of bio-based phenolic synthesic resins. Polym Bull. 2020; 12: 9-17.

Jia P, Ma Y, Kong Q, Xu L, Li Q, Zhou Y. Progress in development of epoxy resin systems based on biomass resources. Green Mater. 2020; 8: 6-23. https://doi.org/10.1680/jgrma.19.00026

Wang X, Guo W, Song L, Hu Y. Intrinsically flame retardant bio-based epoxy thermosets: A review. Compos B Eng. 2019; 179: 107487. https://doi.org/10.1016/j.compositesb.2019.107487

Huo S, Song P, Yu B, Ran S, Chevali VS, Liu L, et al. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives. Prog Polym Sci. 2021; 114: 101366. https://doi.org/10.1016/j.progpolymsci.2021.101366

Rashid MA, Liu W, Wei Y, Jiang Q. Review of intrinsically recyclable biobased epoxy thermosets enabled by dynamic chemical bonds. Polym Plast Technol Eng. 2022; 61: 1740-82. https://doi.org/10.1080/25740881.2022.2080559

Zhi M, Yang X, Fan R, Yue S, Zheng L, Liu Q, et al. A comprehensive review of reactive flame-retardant epoxy resin: fundamentals, recent developments, and perspectives. Polym Degrad Stab. 2022; 201: 109976. https://doi.org/10.1016/j.polymdegradstab.2022.109976

Niu Hx, Wangm X, Song L, Hu Y. Progress on intrinsically flame-retardant bio-based epoxy thermosets. Acta Polym Sin. 2022; 53: 894-905. 10.11777/j.issn1000-3304.2022.22007

Qin J, Liu H, Zhang P, Wolcott M, Zhang J. Use of eugenol and rosin as feedstocks for biobased epoxy resins and study of curing and performance properties. Polym Int. 2014; 63: 760-5. https://doi.org/10.1002/pi.4588

Wan J, Zhao J, Zhang X, Fan H, Zhang J, et al. Epoxy thermosets and materials derived from bio-based monomeric phenols: Transformations and performances. Prog Polym Sci. 2020; 108: 101287. https://doi.org/10.1016/j.progpolymsci.2020.101287

Lorwanishpaisarn N, Srikhao N, Jetsrisuparb K, Knijnenburg JTN, Theerakulpisut S, Okhawilai M, et al. Self healing ability of epoxy vitrimer nanocomposites containing bio based curing agents and carbon nanotubes for corrosion protection. J Polym Environ. 2021; 30: 472-82. https://doi.org/10.1007/s10924-021-02213-3

Han J, Liu T, Hao C, Zhang S, Guo B, Zhang J. A Catalyst-Free Epoxy Vitrimer System Based on Multifunctional Hyperbranched Polymer. Macromolecules. 2018; 51: 6789-99. https://doi.org/10.1021/acs.macromol.8b01424

Ye C, Voet VSD, Folkersma R, Loos K. Robust superamphiphilic membrane with a closed-loop life cycle. Adv Mater. 2021; 33: e2008460. https://doi.org/10.1002/adma.202008460

Yan X, Liu T, Hao C, Shao L, Chang YC, Cai Z, et al. Robust Superamphiphilic Membrane with a Closed-Loop Life Cycle. Ind Crop Prod. 2023; 202: 116976. https://doi.org/10.1002/adma.202008460

Manarin E, Via F. Da, Rigatelli B, Turri S, Griffini G. Bio-based vitrimers from 2,5-furandicarboxylic acid as repairable, reusable, and recyclable epoxy systems. ACS Appl Polym Mater. 2023; 5: 828-38. https://doi.org/10.1021/acsapm.2c01774

Frias CF, Serra AC, Ramalho A, Coelho JFJ, Fonseca A. C. Preparation of fully biobased epoxy resins from soybean oil based amine hardeners. Ind Crop Prod. 2017; 109: 434-44. https://doi.org/10.1016/j.indcrop.2017.08.041

Liu Y, Wang B, Ma S, Xu X, Qiu J, Li Q, et al. Phosphate-based covalent adaptable networks with recyclability and flame retardancy from bioresource. Eur Polym J. 2021; 144: 110236. https://doi.org/10.1016/j.eurpolymj.2020.110236

Chen X, Chen S, Xu Z, Zhang J, Miao M, Zhang D. Degradable and recyclable bio-based thermoset epoxy resin. Green Chem. 2020; 22: 4187-98. https://doi.org/10.1039/D0GC01250E

Hao C, Liu T, Zhang S, Brown L, Li R, Xin J, et al. A high-lignin-content, removable, and glycol-assisted repairable coating based on dynamic covalent bonds. ChemSusChem. 2019; 12(5): 1049-1058. https://doi.org/10.1002/cssc.201802615

Xu Y, Dai S, Bi L, Jiang J, Zhang H, Chen Y. Catalyst-free self-healing bio-based polymers: Robust mechanical properties, shape memory, and recyclability. J Agric Food Chem. 2021; 69: 9338-49. https://doi.org/10.1021/acs.jafc.1c01885

Zhang S, Liu T, Hao C, Wang L, Han J, Liu H, et al. Preparation of a lignin-based vitrimer material and its potential use for recoverable adhesive. Green Chem. 2018; 20: 2995-3000. https://doi.org/10.1039/C8GC01299G

Kasemsiri P, Lorwanishpaisarn N, Pongsa U, Ando S. Reconfigurable shape memory and self-welding properties of epoxy phenolic novolac/cashew nut shell liquid composites reinforced with carbon nanotubes. Polymers (Basel). 2018; 10: 482. https://doi.org/10.3390/polym10050482

Feng X, Fan J, Li A, Li G. Biobased tannic acid cross-linked epoxy thermosets with hierarchical molecular structure and tunable properties: Damping, shape memory, and recyclability. ACS Sustainable Chem Eng. 2019; 8: 874-83. https://doi.org/10.1021/acssuschemeng.9b05198

Cao L, Fan J, Huang J, Chen Y. Robust and stretchable cross-linked rubber network with recyclable and self-healable capabilities based on dynamic covalent bonds. J Mater Chem A. 2019; 7: 4922-33. https://doi.org/10.1039/C8TA11587G

Kadam A, Pawar M, Yemul O, Thamke V, Kodam K. Biodegradable biobased epoxy resin from karanja oil. Polymer. 2015; 72: 82-92. https://doi.org/10.1016/j.polymer.2015.07.002

Li Y, Liu T, Zhang S, Shao L, Fei M, et al. Catalyst-free vitrimer elastomer based on dimer acid: robust mechanical performance, adaptivity and hydrothermal recyclability. Green Chem. 2020; 22: 870-81. https://doi.org/10.1039/C9GC04080C

Liu T, Zhang S, Hao C, Verdi C, Liu W, Liu H, et al. Glycerol induced catalyst-free curing of epoxy and vitrimer preparation. Macromol Rapid Commun. 2019; 40: e1800889. 10.1002/marc.201800889

Wu J, Yu X, Zhang H, Guo J, Hu J, Li M.-H. Fully Biobased Vitrimers from Glycyrrhizic Acid and Soybean Oil for Self-Healing, Shape Memory, Weldable, and Recyclable Materials. ACS Sustainable Chem Eng. 2020; 8: 6479-87. https://doi.org/10.1021/acssuschemeng.0c01047

Xu YZ, Fu P, Dai Sl, Zhang HB, Bi LW, Jiang JX, et al. Catalyst-free self-healing fully bio-based vitrimers derived from tung oil: Strong mechanical properties, shape memory, and recyclability. Ind Crop Prod. 2021; 171: 113978. https://doi.org/10.1016/j.indcrop.2021.113978

Fei M, Liu T, Zhao B, Otero A, Chang YC, Zhang J. From glassy plastic to ductile elastomer: vegetable oil-based uv-curable vitrimers and their potential use in 3D printin. ACS Appl Polym Mater. 2021; 3: 2470-79. https://doi.org/10.1021/acsapm.1c00063

Ma S, Webster DC. Naturally occurring acids as cross-linkers to yield VOC-free, high-performance, fully bio-based, degradable thermosets. Macromolecules. 2015; 48: 7127-37. https://doi.org/10.1021/acs.macromol.5b01923

Liu T, Guo X, Liu W, Hao C, Wang L, Hiscox WC, et al. Selective cleavage of ester linkages of anhydride-cured epoxy using a benign method and reuse of the decomposed polymer in new epoxy preparation. Green Chem. 2017; 19: 4364-72. https://doi.org/10.1039/C7GC01737E

Liu T, Guo L, Hao C, Wang L, Hiscox WC, Liu C, et al. Selective cleavage of ester linkages of anhydride-cured epoxy using a benign method and reuse of the decomposed polymer in new epoxy preparation. Ind Crop Prod. 2022; 185: 005116. https://doi.org/10.1039/C7GC01737E

Zhong L, Hao Y, Zhang J, Wei F, Li T, Miao M, et al. Closed-loop recyclable fully bio-based epoxy vitrimers from ferulic acid-derived hyperbranched epoxy resin. Macromolecules. 2022; 55: 595-607. https://doi.org/10.1021/acs.macromol.8b01424

Zhou S, Huang K, Xu X, Wang B, Zhang W, Su Y, et al. Rigid-and-flexible, degradable, fully biobased thermosets from lignin and soybean oil: synthesis and properties. ACS Sustainable Chem Eng. 2023; 11: 3466-73. https://doi.org/10.1021/acssuschemeng.2c06990

Ma S, Webster DC, Jabeen F. Hard and Flexible, degradable thermosets from renewable bioresources with the assistance of water and ethanol. Macromolecules. 2016; 49: 3780-8. https://doi.org/10.1021/acs.macromol.6b00594

Allasia M, Estevez VG, Chesta AA, Baccifava R, Gugliotta LM. Alvarez Igarzabal CI, et al. New insights into the properties of alkali-degradable thermosets based on epoxidized soy oil and plant-derived dicarboxylic acids. Polymer. 2021; 232: 124143. https://doi.org/10.1016/j.polymer.2021.124143

Liu T, Hao C, Wang L, Li Y, Liu W, Xin J, et al. Eugenol-derived biobased epoxy: shape memory, repairing, and recyclability. Macromolecules. 2017; 50: 8588-8597. https://doi.org/10.1021/acs.macromol.7b01889

Liu T, Hao C, Zhang S, Yang X, Wang L, Han J, et al. A self-healable high glass transition temperature bioepoxy material based on vitrimer chemistry. Macromolecules. 2018; 51: 5577-85. https://doi.org/10.1021/acs.macromol.8b01010

Xu Y, Dai S, Bi L, Jiang J, Zhang H, Chen Y. Catalyst-free self-healing bio-based vitrimer for a recyclable, reprocessable, and self-adhered carbon fiber reinforced composite. Chem Eng J. 2022; 429: 132518. https://doi.org/10.1016/j.cej.2021.132518

Chen Y, Tang Z, Liu Y, Wu S, Guo B. Mechanically robust, self-healable, and reprocessable elastomers enabled by dynamic dual cross-links. Macromolecules. 2019; 52: 3805-12. https://doi.org/10.1021/acs.macromol.9b00419

Zeng Y, Li J, Liu S, Yang B. Rosin-based epoxy vitrimers with dynamic boronic ester bonds. Polymers. 2021; 13: 3386. https://doi.org/10.3390/polym13193386

Hu J, Feng H, Rong Y, Wang S, Jin D, Chen Q, et al. Recyclable bio-based epoxy resins containing hybrid cross-linking networks. Polym Adv Technol. 2023; 34: 1599-1607. https://doi.org/10.1002/pat.5994

Ke Y, Yang X, Chen Q, Xue J, Song Z, Zhang Y, et al. Recyclable and fluorescent epoxy polymer networks from cardanol via solvent-free epoxy-thiol chemistry. ACS Appl Polym Mater. 2021; 3: 3082-92. https://doi.org/10.1021/acsapm.1c00284

Memon H, Liu H, Rashid MA, Chen L, Jiang Q, Zhang L, et al. Vanillin-based epoxy vitrimer with high performance and closed-loop recyclability. Macromolecules. 2020; 53: 621-30. https://doi.org/10.1021/acs.macromol.9b02006

Fang Z, Nikafshar S, Hegg EL, Nejad M. Biobased divanillin as a precursor for formulating biobased epoxy resin. ACS Sustainable Chem Eng. 2020; 8: 9095-103. 10.1021/acssuschemeng.0c02351

Mo R, Song L, Hu J, Sheng X, Zhang X. Acid-degradable biobased epoxy-imine adaptable network polymer and its fabrication for responsive structural color film. Polym Chem. 2020,;11: 974-81. https://doi.org/10.1039/C9PY01821B

Xu Y, Odelius K, Hakkarainen M. Photocurable, Thermally Reprocessable, and Chemically Recyclable Vanillin-Based Imine Thermosets. ACS Sustainable Chem Eng. 2020; 8: 17272-9. https://doi.org/10.1021/acssuschemeng.0c06248

Liu T, Peng J, Liu J, Hao X, Guo C, Ou R, et al. Fully recyclable, flame-retardant and high-performance carbon fiber composites based on vanillin-terminated cyclophosphazene polyimine thermosets. Compos B Eng. 2021; 22: 109188. https://doi.org/10.1016/j.compositesb.2021.109188

Liang K, Zhang G, Zhao J, Shi L, Cheng J, Zhang J. Malleable, recyclable, and robust poly(amide-imine) vitrimers prepared through a green polymerization process. ACS Sustainable Chem Eng. 2021; 9: 5673-83. https://doi.org/10.1021/acssuschemeng.1c00626

Wang S, Ma S, Li Q, Xu X, Wang B, Yuan W, et al. Facile in-situ preparation of high-performance epoxy vitrimers from renewable resources and its application in nondestructively recyclable carbon fiber composites. Green Chem. 2019; 21: 1484-97. https://doi.org/10.1039/C8GC03477J

Mai VD, Shin SR, Lee DS, Kang I. Thermal healing, reshaping and ecofriendly recycling of epoxy resin crosslinked with schiff base of vanillin and hexane-1,6-diamine. Polymers. 2019; 11: 293. https://doi.org/10.3390/polym11020293

Taynton P, Yu K, Shoemaker RK, Jin Y, Qi HJ, Zhang W. Heat- or water-driven malleability in a highly recyclable covalent network polymer. Adv Mater. 2014; 26: 3938-42. https://doi.org/10.1002/adma.201400317

Jiang Y, Wang S, Dong W, Kaneko T, Chen M, Shi D. High-strength, degradable and recyclable epoxy resin based on imine bonds for its carbon-fiber-reinforced composites. Materials. 2023; 16: 1604. https://doi.org/10.3390/ma16041604

Liu X, Zhang E, Feng Z, Liu J, Chen B, Liang L. Degradable bio-based epoxy vitrimers based on imine chemistry and their application in recyclable carbon fiber composites. J Mater Sci. 2021; 56: 15733-51. https://doi.org/10.1007/s10853-021-06291-5

Song F, Li Z, Jia P, Zhang M, Bo C, Feng G, et al. Tunable “soft and stiff”, self-healable, recyclable, thermadapt shape memory biomass polymer based on multiple hydrogen bonds and dynamic imine bonds. J Mater Chem A. 2019; 7: 13400-10. https://doi.org/10.1039/C9TA03872H

Su X, Zhou Z, Liu J, Luo J, Liu R. A recyclable vanillin-based epoxy resin with high-performance that can compete with DGEBA. Eur Polym J. 2020; 140: 110053. https://doi.org/10.1016/j.eurpolymj.2020.110053

Zhao S, Abu-Omar MM. Recyclable and malleable epoxy thermoset bearing aromatic imine bonds. Macromolecules. 2018; 51: 9816-24. https://doi.org/10.1021/acs.macromol.8b01976

Bo Z, Yan C, Zhu Y, Liu D, Xu H, Chen G, et al. Research progress bio-based degradable epoxy resins and their recyclable carbon fiber composites. New Chem Mater. 2024; 52: 8-17. https://doi.org/10.19817/j.cnki.issn1006-3536.2024.01.028

Yu Q, Peng X, Wang Y, Geng H, Xu A, Zhang X, et al. Vanillin-based degradable epoxy vitrimers: Reprocessability and mechanical properties study. Eur Polym J. 2019; 117: 55-63. https://doi.org/10.1016/j.eurpolymj.2019.04.053

Geng H, Wang Y, Yu Q, Gu S, Zhou Y, Xu W, et al. Vanillin-based polyschiff vitrimers: reprocessability and chemical recyclability. ACS Sustainable Chem Eng. 2018; 6: 15463-70. https://doi.org/10.1021/acssuschemeng.3c00379

Wang S, Ma S, Li Q, Yuan W, Wang B, Zhu J. Robust, fire-safe, monomer-recovery, highly malleable thermosets from renewable bioresources. Macromolecules. 2018; 51: 8001-12. https://doi.org/10.1021/acs.macromol.8b01601

Guo Z, Liu B, Zhou L, Wang L, Majeed K, Zhang B, et al. Preparation of environmentally friendly bio-based vitrimers from vanillin derivatives by introducing two types of dynamic covalent C-N and S-S bonds. Polymer. 2020; 197: 122483. https://doi.org/10.1016/j.polymer.2020.122483

Liu X, Liang L, Lu M, Song X, Liu H, Chen G. Water-resistant bio-based vitrimers based on dynamic imine bonds: Self-healability, remodelability and ecofriendly recyclability. Polymer. 2020; 210: 123030. https://doi.org/10.1016/j.polymer.2020.123030

Xu X, Ma S, Wu J, Yang J, Wang B, Wang S, et al. High-performance, command-degradable, antibacterial Schiff base epoxy thermosets: synthesis and properties. J Mater Chem A. 2019; 7: 15420-31. https://doi.org/10.1039/C9TA05293C

Liu YY, Liu GL, Li YD, Weng Y, Zeng JB. Biobased High-Performance Epoxy Vitrimer with UV Shielding for Recyclable Carbon Fiber Reinforced Composites. ACS Sustainable Chem Eng. 2021; 9: 4638-47. https://doi.org/10.1021/acssuschemeng.1c00231

Ma S, Wei J, Jia Z, Yu T, Yuan W, Li Q, et al. Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger. J Mater Chem A. 2019; 7: 1233-43. https://doi.org/10.1039/C8TA07140C

Yuan W, Ma S, Wang S, Li Q, Wang B, Xu X, et al. Readily recyclable, high-performance thermosetting materials based on a lignin-derived spiro diacetal trigger. Eur Polym J. 2019; 117: 200-7. https://doi.org/10.1039/C8TA07140C

Ge M, Miao JT, Zhang K, Wu Y, Zheng L, Wu L. Building biobased, degradable, flexible polymer networks from vanillin via thiol-ene “click” photopolymerization. Polym Chem. 2021; 12: 564-71. https://doi.org/10.1039/D0PY01407A

Zhao L, Zhang L, Wang Z. Synthesis and degradable property of cycloaliphatic epoxy resin from renewable biomass-based furfural. RSC Adv. 2015; 5: 95126-32. https://doi.org/10.1039/C5RA18658G

Wang B, Ma S, Li Q, Zhang H, Liu J, Wang R, et al. Facile synthesis of “digestible”, rigid-and-flexible, and bio-based building block for high-performance degradable thermosetting plastics. Green Chem. 2020; 22: 1275-90. https://doi.org/10.1039/C9GC04020J

Ma Z, Wang Y, Zhu J, Yu J, Hu Z. Bio-based epoxy vitrimers: Reprocessibility, controllable shape memory, and degradability. J Polym Sci Part A: Polym Chem. 2017; 55: 1790-9. https://doi.org/10.1002/pola.28544

Zhang C, Wang X, Liang D, Deng H, Lin Z, Feng P, et al. Rapid self-healing, multiple recyclability and mechanically robust plant oil-based epoxy resins enabled by incorporating tri-dynamic covalent bondings. J Mater Chem A. 2021; 9: 18431-9. https://doi.org/10.1039/D1TA04593H

Mauro CD, Genua A, Mija A. Building thermally and chemically reversible covalent bonds in vegetable oils based epoxy thermosets. Influence of epoxy-hardener ratio to promote recyclability. Mater Adv. 2020; 1: 1788-98. https://doi.org/10.1039/D0MA00370K

Shan S, Mai D, Lin Y, Zhang A. Self-healing, reprocessable, and degradable bio-based epoxy elastomer bearing aromatic disulfide bonds and its application in strain sensors. ACS Appl Polym Mater. 2021; 3: 5115-24. https://doi.org/10.1021/acsapm.1c00865

Ocando C, Ecochard Y, Decostanzi M, Caillol S, Avérous L. Dynamic network based on eugenol-derived epoxy as promising sustainable thermoset materials. Eur Polym J. 2020; 135:109860. https://doi.org/10.1016/j.eurpolymj.2020.109860

Zeng Y, Yang B, Yuan R, Luo Z. Fabrication and properties of rosin-based epoxy vitrimer with dual dynamic covalent bonds. Chem J Chinese Universities. 2023; 44(4): 20220621. https://doi.org/10.7503/cjcu20220621

Shen X, Liu X, Wang J, Dai J, Zhu J. Synthesis of an epoxy monomer from bio-based 2,5- furandimethanol and its toughening via diels-alder reaction. Ind Eng Chem Res. 2017; 56: 8508-16. https://doi.org/10.1021/acs.iecr.7b01624

Karami Z, Zohuriaan-Mehr MJ, Rostami A. Bio-based thermo-healable non-isocyanate polyurethane DA network in comparison with its epoxy counterpart. J CO2 Util. 2017; 18: 294-302. https://doi.org/10.1016/j.jcou.2017.02.009

di Mauro C, Tran TN, Graillot A, Mija A. Enhancing the recyclability of a vegetable oil-based epoxy thermoset through initiator influence. ACS Sustainable Chem Eng. 2020; 8: 7690-700. https://doi.org/10.1021/acssuschemeng.0c01419

Zhao XL, Tian PX, Li YD, Zeng JB. Biobased covalent adaptable networks: towards better sustainability of thermosets. Green Chem. 2022; 24: 4363-87. https://doi.org/10.1039/d2gc01325h

Zhao W, Liu J, Wang S, Dai J, Liu X. Bio-based thermosetting resins: from molecular engineering to intrinsically multifunctional customization. Adv Mater. 2024; 231242: 1-23. https://doi.org/10.1002/adma.202311242

Liu J, Wang S, Peng Y, Zhu J, Zhao W, Liu X. Advances in sustainable thermosetting resins: From renewable feedstock to high performance and recyclability. Prog Polym Sci. 2021; 113: 101353. https://doi.org/10.1016/j.progpolymsci.2020.101353

Lejeail M, Fischer HR. Investigations on the replacement of bismaleimide by the bio-based bisitaconimide for recyclable thermoset composites based on thermos-reversible Diels-Alder cross-links. Eur Polym J. 2020; 131: 109699. https://doi.org/10.1016/j.eurpolymj.2020.109699

Wu P, Liu L, Wu Z. Synthesis of diels-alder reaction-based remendable epoxy matrix and corresponding self-healing efficiency to fibrous composites. Macromol Mater Eng. 2020; 305: 2000359. https://doi.org/10.1002/mame.202000359

Zhang Y, Ye J, Qu D, Wang H, Chai C, Feng L. Thermo-adjusted self-healing epoxy resins based on Diels-Alder dynamic chemical reaction. Polym Eng Sci. 2021; 61: 2257-66. https://doi.org/10.1002/pen.25753

Zhao HW, Feng LB, Shi XT, Wang YP, Liu YH. Synthesis and healing behavior of thermo-reversible self-healing epoxy resins. Acta Polym Sini. 2018; (3): 395-401. 10.11777/j.issn1000-3304.2017.17083

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Mengting Wan, Xuemei Liu, Yuan Zhang

Downloads

Download data is not yet available.