In the Framework of Global Trade, Sustainability and Industry Demand for Innovative Process and Technologies, what kind of Modern “Green” Chemical Engineering is Required for the Design of “the Factory of the Future”?

Authors

  • Jean-Claude Charpentier University of Lorraine, 1, rue Grandville, 54001, Nancy, France

DOI:

https://doi.org/10.15377/2409-787X.2019.06.2

Keywords:

Green chemical and process engineering, Multiscale modeling, Sustainable product design and engineering, Novel process windows, Factory of the future, Modular plants, Additive manufacturing.

Abstract

 The chemical, petroleum, gas, energy and related industries are today confronted with the globalization of the markets, acceleration of partnerships and demand for innovative process and technologies for economic growth, and they are required to offer a contribution to the fight against environmental destruction and not always sustainable behavior of the today world production. This militates for the evolution of chemical engineering in favor of a modern green process engineering voluntarily concerned by sustainability that will face new challenges and stakes bearing on complex length and time multiscale systems at the molecular scale, at the product scale and at the process scale. Indeed, the existing and the future industry processes are progressively adapted to the principles of the « green (bio) chemistry ». This involves a modern approach of chemical engineering that satisfies both the market requirements for specific nano and microscale end-use properties of competitive targeted green (sustainable) products, and the social and environmental constraints of sustainable industrial meso and macroscale production processes at the scales of the units and sites of production. These multiscale constraints require an integrated system approach of complex multidisciplinary, non-linear, non equilibrium processes and transport phenomena occurring on the different time and length scales of the chemical supply chain. This means a good understanding of how phenomena at a smaller length-scale relates to properties and behavior at a longer length-scale, from the molecular and active aggregates-scales up to the production-scales (i.e. the design of a refinery from the Schrödinger’s equations...). It will be seen that the success of this integrated multiscale approach for process innovation (the 3rd paradigm of chemical engineering) is mainly due to the considerable developments in the analytical scientific techniques coupled with image processing, in the powerful computational tools and capabilities (clusters, supercomputers, cloud computers, graphic processing units, numerical codes parallelization etc.) and in the development and application of descriptive models of steady state and dynamic behavior of the objects at the scale of interest. This modern scientific multiscale approach of chemical engineering « the green approach of process engineering » that combines both market pull and technology push is strongly oriented on process intensification and on the couple green products/green processes “to produce much more and better in using much less”, i.e. to sustainabily produce molecules and products responding to environmental and economic challenges. It will be pointed out that process intensification due to innovative continuous flow process processes (novel process windows) and innovative technologies and new equipment construction technologies (additive manufacturing) will contribute to the design of the eco-efficient “factory of the future ”:i.e. a plant in a shoe box for polymer production or in a mobile banana container platform for small-scale production of specialty chemicals, or more generally modular plants leading to flexible chemical production by modularization and standardization in the pharmaceutical and specialty chemical industries and in a great number of other fields such as materials, petroleum and gas, water treatment and desalination and environmental management, among others.

Downloads

Download data is not yet available.

Author Biography

  • Jean-Claude Charpentier, University of Lorraine, 1, rue Grandville, 54001, Nancy, France
    Reactions and Process Engineering Laboratory, CNRS / ENSIC

References

JP. Mohamad, V. Sage, WJ. Lee, S. Periasamy, D. Deepa, et al., Tri-reforming of methane for the production of syngas: review on the process, catalysts and kinetic mechanisms, APCChE 2015 Congress - incorporating Chemeca 2015, Melbourne, Australia.

P. T. Anastas, N. Eghbali, Green Chemistry: Principles and Practice, Chem. Soc. Rev. 39 (2010) 301 https://doi.org/10.1039/B918763B DOI: https://doi.org/10.1039/B918763B

J.C. Charpentier, What kind of Modern "green" Chemical Engineering is required for the Design of the "Factory of Future"?, Procedia Engineering, 138 (2016) 445-458. https://doi.org/10.1016/j.proeng.2016.02.104 DOI: https://doi.org/10.1016/j.proeng.2016.02.104

R.J. Goncalves, D. Romero, A. Grilo, Factories of the Future: Challenging and Leading Innovations in Intelligent Manufacturing, International Journal of Computer Integrated Manufacturing 30 (2017) 4-13.

Y. Yamauchi, S. Noda, H. Komiyama, Chemical Engineering for technology innovation, Chem. Eng. Comm. 196 (2009) 267-276. DOI: https://doi.org/10.1080/00986440802290029

T.F. Degnan Jr, Chemical engineering challenges in the refining and petrochemical industries – the decade ahead, Current Opinion in Chemical Engineering, 9 (2015) 75-82. https://doi.org/10.1016/j.coche.2015.09.003 DOI: https://doi.org/10.1016/j.coche.2015.09.003

N.M. Nikacevik, A.E.M. Huesman, P.M.J. Van den Hof, A. Stankiewicz, Opportunities and Challenges for process control in process intensification, Chemical Engineering and Processing 52 (2012) 1-15. https://doi.org/10.1016/j.cep.2011.11.006 DOI: https://doi.org/10.1016/j.cep.2011.11.006

P.T. Anastas, Fusing green chemistry and green engineering: DesignBuild at the molecular level, Green Chemistry 10 (2008) 607. https://doi.org/10.1039/b808091g DOI: https://doi.org/10.1039/b808091g

J.C. Charpentier, Perspective on multiscale methodology for product design and engineering, Computers and Chemical Engineering 33 (2009) 936-946. https://doi.org/10.1016/j.compchemeng.2008.11.007 DOI: https://doi.org/10.1016/j.compchemeng.2008.11.007

K.F. Jensen, Flow chemistry – Microreaction technology comes of age, AIChE Journal, 63 (2017) 858-869. https://doi.org/10.1002/aic.15642 DOI: https://doi.org/10.1002/aic.15642

I.E. Grossmann, A.E. Westerberg, Research challenges in Process Systems Engineering, AIChE J. 46 (2000) 1700- 1703. https://doi.org/10.1002/aic.690460902 DOI: https://doi.org/10.1002/aic.690460902

I.E. Grossmann, Challenges in the new millennium: Product discover and design, enterprise, and supply chain optimization, global life assessment, Computers and Chemical Engineering 29 (2004) 29-39. https://doi.org/10.1016/j.compchemeng.2004.07.016 DOI: https://doi.org/10.1016/j.compchemeng.2004.07.016

International Conference on Multiscale Approaches for Process Innovation (MAPI), 25 – 27 January 2012, Lyon (France), IFP Energies International Conference, Special issue OGST Journal 68 (2012) 951-1113.

J. Lerou, K.M. Ng, Chemical Reaction Engineering: A Multiscale Approach to a Multiobjective Task, Chem. Eng. Science 51 (1996) 1595-1614. https://doi.org/10.1016/0009-2509(96)00022-X DOI: https://doi.org/10.1016/0009-2509(96)00022-X

J.C. Charpentier, The triplet "molecular process-productprocess" engineering: the future of chemical engineering? Chem. Eng. Science 57 (2002) 4667-4690 https://doi.org/10.1016/S0009-2509(02)00287-7 DOI: https://doi.org/10.1016/S0009-2509(02)00287-7

K.U. Klatt, W. Marquardt, Perspectives for process systems engineering- Personal views from academia and industry, Computers and Chemical Engineering 33 (2009) 536-550. https://doi.org/10.1016/j.compchemeng.2008.09.002 DOI: https://doi.org/10.1016/j.compchemeng.2008.09.002

J.C. Charpentier, Among the trends for a modern chemical engineering, the third paradigm: The time and length multiscale approach as an efficient tool for process intensification and product design and engineering, Chemical Engineering Research and Design 88 (2010) 248-254. https://doi.org/10.1016/j.cherd.2009.03.008 DOI: https://doi.org/10.1016/j.cherd.2009.03.008

J.C. Charpentier, C. Barrère-Tricca, Towards the 3rd paradigm of chemical engineering: The time and length Multiscale approaches as an efficient tool for sustainable process innovation, Oil & Gas Science and technology 68 (2013), 965-976. DOI: https://doi.org/10.2516/ogst/2013180

A. Lucia, Multi-scale methods and complex processes: A survey and look ahead, Computers and Chemical Engineering 34 (2010) 1467-1475. https://doi.org/10.1016/j.compchemeng.2009.10.004 DOI: https://doi.org/10.1016/j.compchemeng.2009.10.004

K.M. Ng, J. Li, M. Kwauk, Process engineering research in China: a Multiscale market-driven approach, AIChE J. 51 (2005) 2620. https://doi.org/10.1002/aic.10658 DOI: https://doi.org/10.1002/aic.10658

R. Scardovelli, S. Zaleski, Direct numerical simulation of freesurface and interfacial flow, Annu Rev. Fluid. Mech. 31 (1999) 567-603. https://doi.org/10.1146/annurev.fluid.31.1.567 DOI: https://doi.org/10.1146/annurev.fluid.31.1.567

C. Dan, A.Wachs, Direct Numerical Simulation of particulate flow with heat transfer, International Journal of Heat and Fluid Flow, 31 (2010) 1050-1057. https://doi.org/10.1016/j.ijheatfluidflow.2010.07.007 DOI: https://doi.org/10.1016/j.ijheatfluidflow.2010.07.007

A. Wachs, Rising 3D catalyst particles in natural convection dominated flow by a parallel DNS method, Computers and Chemical Engineering 35 (2011) 2169-2185. https://doi.org/10.1016/j.compchemeng.2011.02.013 DOI: https://doi.org/10.1016/j.compchemeng.2011.02.013

A. Wachs, PeliGRIFF, a parallel DEM-DLM/FD direct numerical simulation tool for 3D particulate flows, J Eng Math., 71 (2011) 131-155. https://doi.org/10.1007/s10665-010-9436-2 DOI: https://doi.org/10.1007/s10665-010-9436-2

U. Piomelli, Large-Eddy Simulation: Present

State and Future Perspective, AIAA (1998) Paper 98-0534.

M. Boivin, O. Simonin, K.D. Squires, On the prediction of gas-solid flow with two-way coupling using large eddy simulation, Phys. Fluids 12 (2000) 2080-2090. https://doi.org/10.1063/1.870453 DOI: https://doi.org/10.1063/1.870453

N.G. Deen, M. van Sin Annaland, M.A. Van der Hoef, J. Kuipers, Review of discrete particle modeling of fluidized beds, Chem. Eng. Science, 62 (2007) 28-44. https://doi.org/10.1016/j.ces.2006.08.014 DOI: https://doi.org/10.1016/j.ces.2006.08.014

L. Raynal, A., Gomez, B. Caillat, Haroun Y.D., CO2 capture cost reduction: use of a multiscale simulations strategy for a multiscale issue, Oil & Gas Science and technology 68 (2013) 1093-1108. https://doi.org/10.2516/ogst/2012104 DOI: https://doi.org/10.2516/ogst/2012104

C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics 39 (1981) 201-225. https://doi.org/10.1016/0021-9991(81)90145-5 DOI: https://doi.org/10.1016/0021-9991(81)90145-5

Y.D. Haroun, D.L. Legendre, L. Raynal, Volume of fluid method for interactive mass transfer: Application to stable liquid film, Chem. Eng. Science 65 (2010) 2896-2909. https://doi.org/10.1016/j.ces.2010.01.012 DOI: https://doi.org/10.1016/j.ces.2010.01.012

Y.D. Haroun, L. Raynal, Prediction of effective area and liquid hold-up in structured packings by CFD, Chemical Engineering Research and Design 92 (2014) 2247-2254. https://doi.org/10.1016/j.cherd.2013.12.029 DOI: https://doi.org/10.1016/j.cherd.2013.12.029

Y.D. Haroun, L. Raynal, Use of Computational Fluid Dynamics for Absorption Packed Columns Design, Oil & Gas Science and technology 71 (2016) 43. https://doi.org/10.2516/ogst/2015027 DOI: https://doi.org/10.2516/ogst/2015027

J. Klosterman, K. Schaake, R. Schwarze, Numerical simulation of single rising bubble by VOF with surface compression, International Journal of Numerical Methods in Fluids 71 (2013) 960-982. https://doi.org/10.1002/fld.3692 DOI: https://doi.org/10.1002/fld.3692

H. Marschall, R. Mornhinweg, A. Kossmann, S. Oberhauser, K. Langbein, O. Hinrichsen, Numerical simulation of dispersed gas/liquid flows in bubble columns at high phase fractions using OpenFoam. Part II-Numerical simulations and results, Chemical Engineering & Technologies 34 (2011) 1321-1327. https://doi.org/10.1002/ceat.201100162 DOI: https://doi.org/10.1002/ceat.201100162

Y.D. Haroun, L. Raynal, P. Alix, Partitioned distributor tray for offshore gas/liquid contact column, Patent US 20130277868.

L. Raynal, F. Augier, F. Bazer-Bachi,Y.D. Haroun, C. Pereira da Fonte, CFD Applied to Process Development in the Oil and Gas Industry – A Review, Oil & Gas Science and technology 71 (2016) 42. https://doi.org/10.2516/ogst/2015019 DOI: https://doi.org/10.2516/ogst/2015019

G. Besagni, F. Inzoli, T. Ziegenhein, Two-Phase Bubble Columns: A comprehensive Review, ChemEngineering 2 (2018) 13 https://doi.org/10.3390/chemengineering2020013 DOI: https://doi.org/10.3390/chemengineering2020013

D. Ramkrishna, M.R. Sing, Population Balance Modeling: Current Status and Prospects, Annu. Rev. Chem. Biomol. Eng. 5 (2014) 123-146. https://doi.org/10.1146/annurev-chembioeng-060713-040241 DOI: https://doi.org/10.1146/annurev-chembioeng-060713-040241

M. Sen, R. Singh, A. Vanarase, J. John, R. Ramachandran, Multi-dimensional population balance modeling and experimental validation of continuous powder mixing processes, Chem. Eng. Science 80 (2012) 349-360. https://doi.org/10.1016/j.ces.2012.06.024 DOI: https://doi.org/10.1016/j.ces.2012.06.024

H. Zhu, Z. Zhouand, R.Yang, A. Yu, Discrete particle simulation of particulate system: theoretical developments, Chem. Eng. Science, 62 (2007) 3378-3392. https://doi.org/10.1016/j.ces.2006.12.089 DOI: https://doi.org/10.1016/j.ces.2006.12.089

S.V. Muddu, A. Tamrakar, P. Pandey, R. Ramachandran, Model Development and Validation of Fluid Bed Wet Granulation with Dry Binder Addition Using a Population Balance Model Methodology, Processes, 6 (2018) 154. https://doi.org/10.3390/pr6090154 DOI: https://doi.org/10.3390/pr6090154

M. Sen, D. Barrasso, R. Singh, R. Ramachandran, A multiscale hybrid cfd dem pbm description of a fluid-bed granulation process, Processes 2 (2014) 89-111. https://doi.org/10.3390/pr2010089 DOI: https://doi.org/10.3390/pr2010089

S. Succi, The Lattice Boltzmann equation for fluid dynamics and beyond, Oxford: Clarendon Press, 2001

J.J.J. Gillissen, S. Sundaresan, H.E.A. Van den Akker, A lattice Boltzmann study on the drag force in bubble swarms J. Fluid Mech. 679 (2011) pp.101-121. https://doi.org/10.1017/jfm.2011.125 DOI: https://doi.org/10.1017/jfm.2011.125

M.R. Kamali, S. Sundaresan, H.E.A. Van den Akker, J.J.J. Gillissen, A multi-component two-phase Lattice Boltzmann method applied to 1-D Fischer-Tropsch reactor, Chemical Engineering Journal 207 (2012) 587-595. DOI: https://doi.org/10.1016/j.cej.2012.07.019

L. Chen, Q. Kang, Y. Mua, Y.-L. He, W.-Q. Tao, A critical review of the pseudopotential multiphase Lattice Boltzmann model: Methods and applications, International Journal of Heat and Mass Transfer 76 (2014) 210-236. https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.032 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.032

X. Franck, J.C. Charpentier, Y. Ma, N. Midoux, H.Z. Li, A Multiscale Approach for Modeling Bubbles Rising in Non- Newtonian Fluids, Industrial & Engineering Chemistry Research 51 (2012) 2084-2093. https://doi.org/10.1021/ie2006577 DOI: https://doi.org/10.1021/ie2006577

A. Zarghami, S. Kenjeres, C. Haringa, H.E.A. Van den Akker, A comparative assessment of Lattice Boltzmann and Volume of Fluid (VOF) approaches for generic multiphase problems, ICMF-2016, 9th International Conference on Multiphase Flow, May 22nd -27th 2016, Firenze, Italy.

B. Buesser, A. Gröhn, Multiscale aspects of modeling gasphase nanoparticles synthesis Chem. Eng. Technol. 35 (2012) 1133-1143. https://doi.org/10.1002/ceat.201100723 DOI: https://doi.org/10.1002/ceat.201100723

P.Y. Prodhomme, P Raybaud, H. Toulhouat, Free-energy profiles along reduction pathways of MoS2 M-edge and Sedge by dihydrogen: A first-principles study, Journal of Catalysis 280 (2011)178-195. https://doi.org/10.1016/j.jcat.2011.03.017 DOI: https://doi.org/10.1016/j.jcat.2011.03.017

P. Ungerer, B. Tavitian, A. Boutin, Applications of molecular simulations in the Oil and Gas industry, Technip, Paris (2005) 267.

G.A. Orozco, C. Nieto-Draghi, A. D. Mackie, V. Lachet, Equilibrium and Transport Properties of Primary, Secondary and Tertiary Amines by Molecular Simulation, Oil & Gas Science and technology 69 (2014) 42, 833-849. DOI: https://doi.org/10.2516/ogst/2013144

G.A. Orozco, C. Nieto-Draghi, A. D. Mackie, V. Lachet, Transferable force field for equilibrium and transport properties in linear and branched monofunctional and multifunctional amines. I. Primary amines, J. Phys. Chem. B115 (2011) 14617-14625. https://doi.org/10.1021/jp207601q DOI: https://doi.org/10.1021/jp207601q

G.A. Orozco, C. Nieto-Draghi, A. D. Mackie, V. Lachet, Transferable force field for equilibrium and transport properties in linear and branched monofunctional and multifunctional amines. II. Secondary and tertiary amines, J. Phys. Chem. B116 (2012) 6193-6202. https://doi.org/10.1021/jp302972p DOI: https://doi.org/10.1021/jp302972p

R. Gani, Computer-aided methods and tools for chemical product design, Chem. Eng. Res. Design 28 (2004) 2441 DOI: https://doi.org/10.1016/j.compchemeng.2004.08.010

R. Morales-Rodriguez, R. Gani., Multiscale Modelling Framework for Chemical Product-Process Design, Computer-Aided Chemical Engineering 26 (2009) 495-500. DOI: https://doi.org/10.1016/S1570-7946(09)70083-5

M. Mattei, G. Kontogeorges, R. Gani, A comprehensive framework for surfactant selection and design for emulsion based chemical product design, Fluid Phase Equilibrium 362 (2014) 288-299. https://doi.org/10.1016/j.fluid.2013.10.030 DOI: https://doi.org/10.1016/j.fluid.2013.10.030

R. Gani, K.M. Ng, Product Design – Molecules, devices, functional products, and formulated products, Computer- Aided Chemical Engineering 81 (2015) 70-79. https://doi.org/10.1016/j.compchemeng.2015.04.013 DOI: https://doi.org/10.1016/j.compchemeng.2015.04.013

K. Wintermantel, Process and product engineering – achievements, present and future challenges, Chem. Eng. Science 54 (1999) 1601-1620. https://doi.org/10.1016/S0009-2509(98)00412-6 DOI: https://doi.org/10.1016/S0009-2509(98)00412-6

B.L. Braunschweig, C.C. Pantelides, H.I. Britt, S. Sama, Process modelling: The promise of open software architectures, Chemical Engineering Progress 96 (2000) 65- 76.

G. Schopfer, A. Yang, L. Wedel, W. Marquardt, CHEOPS: A tool-integration platform for chemical process modelling and simulation, International Journal on Software Tools for Technology Transfer 6 (2004) 186-202. https://doi.org/10.1007/s10009-004-0157-6 DOI: https://doi.org/10.1007/s10009-004-0157-6

M. Fermeglia, G. Longo, L. Toma, COWAR: A CAPE OPEN software module for the evaluation of process sustainability, Environmental Progress, 27 (2008) 373-382. https://doi.org/10.1002/ep.10262 DOI: https://doi.org/10.1002/ep.10262

M. Fermeglia, G. Longo, L. Toma, Computer aided design for sustainable industrial processes: Specific tools and applications, AIChE Journal 55 (2009) 1065-1078. https://doi.org/10.1002/aic.11730 DOI: https://doi.org/10.1002/aic.11730

D.J. Garcia, F. You, Supply chain design and optimization: Challenges and opportunities, Computers and Chemical Engineering 81 (2015) 153-170. https://doi.org/10.1016/j.compchemeng.2015.03.015 DOI: https://doi.org/10.1016/j.compchemeng.2015.03.015

X.D. Guo, L.J. Zhang, Y. Qian, Systematic Multiscale Method for Studying the Structure performance Relationship of Drug- Delivery Systems, Ind. Eng. Chem. Res. 51 (2012) 4719- 4730. https://doi.org/10.1021/ie2014668 DOI: https://doi.org/10.1021/ie2014668

Z.Jaworski, B Zakrzewska, Towards Multiscale modelling in product engineering, Computers and Chemical Engineering 35 (2011) 434-445. https://doi.org/10.1016/j.compchemeng.2010.05.009 DOI: https://doi.org/10.1016/j.compchemeng.2010.05.009

W. Dzwinel, D.A. Yuen, K. Boryczko, Bridging diverse physical scales with the discrete-paradigm in modeling colloidal dynamics with mesoscopic features, Chem. Eng. Science 61 (2006) 2169. https://doi.org/10.1016/j.ces.2004.01.075 DOI: https://doi.org/10.1016/j.ces.2004.01.075

M. Karimi, D. Marchisio, E. Laurini, M. Fermeglia, S. Pricl, Bridging the gapes across scales: coupling CFD and MD/GCMC in polyurethane foam simulation, Chem. Eng. Science 178 (2018) 39-47. https://doi.org/10.1016/j.ces.2017.12.030 DOI: https://doi.org/10.1016/j.ces.2017.12.030

R. Uglietti, M. Bracconi, M. Maestri, Coupling CFD-DEM and microkinetic modeling of surface chemistry for the simulation of catalytic fluidized system, Reaction Chemistry & Engineering 3 (2018) 527-539. https://doi.org/10.1039/C8RE00050F DOI: https://doi.org/10.1039/C8RE00050F

M. Fermeglia, S. Pricl, Multiscale molecular modeling in nanostructured materials design and process system engineering, Computers and Chemical Engineering 33 (2009) 1701. https://doi.org/10.1016/j.compchemeng.2009.04.006 DOI: https://doi.org/10.1016/j.compchemeng.2009.04.006

Y. Zhao, C. Jiang, A. Yang, Towards computer-aided multiscale modelling: An overarching methodology and support of conceptual modelling, Computers and Chemical Engineering 36 (2012) 10-21. https://doi.org/10.1016/j.compchemeng.2011.06.010 DOI: https://doi.org/10.1016/j.compchemeng.2011.06.010

W. Ge, W. Wang, N. Yang, J. Li, M. Kwauk, F. Chen, J. Chen, X. Fang et all (33 in all), Meso-scale oriented simulation towards virtual process engineering (VPE) – The EMMS Paradigm, Chem. Eng. Science 66 (2011) 4426-4458. https://doi.org/10.1016/j.ces.2011.05.029 DOI: https://doi.org/10.1016/j.ces.2011.05.029

W. Ge, L. Lu, S. Liu, J. Xu, F. Chen, J. Li, Multiscale Discrete Supercomputing – A Game Changer for Process Simulation, Chem. Eng. Technol. 38 (2015) 575-584. https://doi.org/10.1002/ceat.201400746 DOI: https://doi.org/10.1002/ceat.201400746

E. Conte, R. Morales-Rodriguez, R. Gani, The virtual Product-Process Design Laboratory as a Tool for Product Development, Computer Aided Chemical Engineering 26 (2009) 249-254. https://doi.org/10.1016/S1570-7946(09)70042-2 DOI: https://doi.org/10.1016/S1570-7946(09)70042-2

E. Conte, R. Gani, T.I. Malik, The virtual Product-Process Design Laboratory to manage the complexity in the verification of formulated products, Fluid Phase Equilibria 302 (2011) 294-304. https://doi.org/10.1016/j.fluid.2010.09.031 DOI: https://doi.org/10.1016/j.fluid.2010.09.031

S. Kalakul, S. Cignitti, L. Zhang, R. Gani, -VPPD-lab: The Chemical Product Simulator, Computer Aided Chemical Engineering 39 (2017) 61-94. https://doi.org/10.1016/B978-0-444-63683-6.00003-4 DOI: https://doi.org/10.1016/B978-0-444-63683-6.00003-4

S. Jonuzaj, P.T. Akula, P.M. Kleniati, C.S. Adjiman, The formulation of optimal mixtures with generalized disjunctive programming: A solvent design case study, AIChE Journal 62 (2016) 1616-1633. https://doi.org/10.1002/aic.15122 DOI: https://doi.org/10.1002/aic.15122

H.A. Choudury, S. Intikhab, S. Kalakul, R. Gani, N.O. Elbashir, Integration of computational modelling and experimental techniques to design fuel surrogates, Journal of Natural Gas Science and Engineering, ISSN 1875-5100, (2017).

S. Kalakul, M.R. Eden, R. Gani, The chemical Product Simulator – ProCAPD, Computer Aided Chemical Engineering 40 (2017) 979-984.. https://doi.org/10.1016/B978-0-444-63965-3.50165-3 DOI: https://doi.org/10.1016/B978-0-444-63965-3.50165-3

S. Kalakul, L. Zhang, H.A. Choudury, N.O. Elbashir, M.R. Eden, R. Gani, ProCAPD – A Computer-Aided Mod-Based Tool for Chemical Product and Analysis, in Mario R. Eden, Marianthi Ierapetritou and Gavin P. Towler (Editors), Proceedings of the 13th International Symposium on Process System Engineering – PSE 2018, July 1-5 2018, San Diego, California, USA, 2018 Elsevier B.V. All rights reserved. DOI: https://doi.org/10.1016/B978-0-444-64241-7.50073-2

S. Kalakul, L. Zhang, Z. Fang, H.A. Choudury, S. Intikhab, N. Elbashir, M.R. Eden, R. Gani, Computer aided chemical product design – ProCAPD & tailor-made blended products, Computers and Chemical Engineering 116 (2018) 37-55. https://doi.org/10.1016/j.compchemeng.2018.03.029 DOI: https://doi.org/10.1016/j.compchemeng.2018.03.029

Z. Mao, C. Yang, Computational chemical engineering- Towards thorough understanding and precise application, Chinese Journal of Chemical Engineering 24 (2016) 945- 951. https://doi.org/10.1016/j.cjche.2016.04.037 DOI: https://doi.org/10.1016/j.cjche.2016.04.037

M.A. Waller, S.E. Fawcett, Data Science, predictive analytics, big data: a revolution that will transform supply chain design and management, J. Bus Logist 34 (2013) 77-84. https://doi.org/10.1111/jbl.12010 DOI: https://doi.org/10.1111/jbl.12010

BT. Hazen, CA. Boone, JD. Ezell, LA. Jones-Farmer, Data quality for data science, predictive analytics, and big data in supply chain management: an introduction to the problem and suggestions for research applications, Int. J. Prod. Econ. 154 (2014) 72-80. https://doi.org/10.1016/j.ijpe.2014.04.018 DOI: https://doi.org/10.1016/j.ijpe.2014.04.018

J.C. Charpentier, In the frame of globalization and sustainability, process intensification, a path to the future of chemical and process engineering (molecules into money), Chem. Eng. Journal 134 (2007) 84. https://doi.org/10.1016/j.cej.2007.03.084 DOI: https://doi.org/10.1016/j.cej.2007.03.084

T. Van Gerven, A.I. Stankiewicz, Structure, energy, synergy, time - the fundamentals of process intensification, Ind. Eng. Chem. Res. 48 (2009) 246- 2474. DOI: https://doi.org/10.1021/ie801501y

J.B. Powell, Application of multiphase reaction engineering and process intensification to the challenges of sustainable future energy and chemicals, Chem. Eng. Science 157 (2017) 15-25. https://doi.org/10.1016/j.ces.2016.09.007 DOI: https://doi.org/10.1016/j.ces.2016.09.007

Q. Li, K.H. Luo, Q.J. Kang, Y.L. He, Q. Chen, Q. Liu, Lattice Boltzmann methods for multiphase flow and phase-change heat transfer (Review), Prog. Energy Combust. Sci. 52 (2016) 62-105. https://doi.org/10.1016/j.pecs.2015.10.001 DOI: https://doi.org/10.1016/j.pecs.2015.10.001

X. Li, J. Fan, H. Yu, Y. Zhu, H. Wu, Lattice Boltzmann methods simulations shale gas flow in contracting nanochannels, International Journal of Heat and Mass Transfer 122 (2018) 1210-1221. https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.066 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.02.066

F.J. Keil, Process intensification, Rev Chem Eng 34 (2018) 135-200. https://doi.org/10.1515/revce-2017-0085 DOI: https://doi.org/10.1515/revce-2017-0085

A Stankiewicz, J. Moulijn, Process intensification: transforming chemical engineering, Chem. Eng. Progress 1 (2000) 22-34.

A. Gorak, A. Stankiewicz, Intensification and separation systems, Annu. Rev. Chem. Biomol. Eng. 2 (2011) 431-451. https://doi.org/10.1146/annurev-chembioeng-061010-114159 DOI: https://doi.org/10.1146/annurev-chembioeng-061010-114159

Ö Yildirim, A.A. Kiss, E. Y. Kenig, Dividing wall column in chemical process industry: a review on current activities, Sep. Purif. Technol. 80 (2011) 403-417. https://doi.org/10.1016/j.seppur.2011.05.009 DOI: https://doi.org/10.1016/j.seppur.2011.05.009

Z. Anxionnaz, M. Cabassud, C. Gourdon, P. Tochon, Heat exchangers/reactors (hex reactors): concept, technologies: State-of-the-art, Chem. Process. Process Intens. 47 (2008) 2029-2050. https://doi.org/10.1016/j.cep.2008.06.012 DOI: https://doi.org/10.1016/j.cep.2008.06.012

V. Hessel, I.V. Gürsel, Q. Wang, T. Noël, J. Lang J, Potential Analysis of Smart Flow Processing and Microprocess Technology for Fastening Process Development: Use of Chemistry and Process Design as Intensified Fields, Chem. Eng. Technol. 35 (2012) 1185-1204. DOI: https://doi.org/10.1002/ceat.201200038

M. Kashid, A. Gupta, A. Renken, L. Kiwi-Minsker, Numbering-up and mass transfer studies of liquid-liquid twophase microstructured reactors, Chem. Eng. J. 158 (2010) 233-240. https://doi.org/10.1016/j.cej.2010.01.020 DOI: https://doi.org/10.1016/j.cej.2010.01.020

M. Al-Rawashdeh, F. Yu, T.A. Nijhuis, E.V. Rebrov, V. Hessel, J.C. Schouten, Numbered-up gas-liquid micro/milli channels reactor with modular flow distributor, Chem. Eng. J. 207-208 (2012) 645-655. https://doi.org/10.1016/j.cej.2012.07.028 DOI: https://doi.org/10.1016/j.cej.2012.07.028

N. Kockmann, M. Gottsponer, D.M. Roberge, Scale-up concept of single-channel microreactors from process development to industrial production, Chem. Eng. J. 167 (2011) 718-726. https://doi.org/10.1016/j.cej.2010.08.089 DOI: https://doi.org/10.1016/j.cej.2010.08.089

J. Zhang, K. Wang, A.R. Teixeira, K.F. Jensen, G. Luo, Design and Scaling Up of Microchemical Systems: A Review, Annu. Rev. Chem. Biomol. Eng. 8 (2017) 13.1-13.21. https://doi.org/10.1146/annurev-chembioeng-060816-101254 DOI: https://doi.org/10.1146/annurev-chembioeng-060816-101443

I. Rossetti, M. Compagnoni, Chemical reaction engineering, process design and scale-up issues at the frontier of synthesis: Flow chemistry, Chem. Eng. J. 206 (2016) 56-70. DOI: https://doi.org/10.1016/j.cej.2016.02.119

Y. Jun-Ichi, K. Heejin, N. Aiichiro, "Impossible" chemistries based on flow and micro, Journal of Flow Chemistry 7 (2017) Issue 3-4 doi.orga/10.1556/1846.2017.00017. DOI: https://doi.org/10.1556/1846.2017.00017

J.J. Lerou, A.I Tonkovich, L. Silva, S. Perry, J. MacDaniel, Microchannel reactor architecture enable greener processes, Chem. Eng. Science 65 (2010) 380-385. https://doi.org/10.1016/j.ces.2009.07.020 DOI: https://doi.org/10.1016/j.ces.2009.07.020

J.C. Charpentier, Intensification de procédés,-Introduction, Techniques de l'Ingénieur, J7000 (2016) 1-6. DOI: https://doi.org/10.51257/a-v1-j7000

K.S. Elvira, X. Cl. Solvas, R.C.R. Wootton, A.J. DeMello, The past, present and potential for microfluidic reactor technology in chemical synthesis, Nat. Chem. 5 (2013) 905-915. https://doi.org/10.1038/nchem.1753 DOI: https://doi.org/10.1038/nchem.1753

V. Hessel, B. Cortese, M.H.J.M. de Croon, Novel process windows- Concept, proposition and evaluation methodology, and intensified superheating processing", Chemical Engineering Science 66 (2011) 1426-1448. https://doi.org/10.1016/j.ces.2010.08.018 DOI: https://doi.org/10.1016/j.ces.2010.08.018

V. Hessel, D. Kralish, N. Kochman, T. Noel, Q. Wang, Novel process windows for enabling, accelerating and uplifting flow chemistry, ChemSusChem 6 (2013) 746-789. https://doi.org/10.1002/cssc.201200766 DOI: https://doi.org/10.1002/cssc.201200766

V. Hessel, D. Kralish, N. Kochman, Novel Process Windows: Innovative Gates to Intensified and Sustainable Chemical Processes, Wiley VCH, 2015. DOI: https://doi.org/10.1002/9783527654826

J. Lang, F. Stenger, H. Richert, Small is beautiful, Evonik Elements 37 (2011) 12-17.

T. Bieringer, S. Bucholtz, N. Kockmann, Future Production Concepts in the Chemical Industry: Modular – Small-Scale – Continuous, Chem. Eng. Technol. 36 (2013) 900-910. https://doi.org/10.1002/ceat.201200631 DOI: https://doi.org/10.1002/ceat.201200631

Y. Kim, L.K. Park, S. Yiacoumi, C. Tsouris, Modular Chemical Process Intensification: A Review, Annu. Rev. Chem. Biomol. Eng. 8 (2017) 359-380. https://doi.org/10.1146/annurev-chembioeng-060816-101354 DOI: https://doi.org/10.1146/annurev-chembioeng-060816-101354

M. Baldea, T.F. Edgar, B.L. Stanley, A.A. Kiss, Modular Manufacturing Processes: Status, Challenges and Opportunities, AIChE Journal 63 (2017) 4262-4272. https://doi.org/10.1002/aic.15872 DOI: https://doi.org/10.1002/aic.15872

M. Baldea, T.F. Edgar, B.L. Stanley, A.A. Kiss, Modularization in Chemical Processing, CEP, March 2018, 2- 10, wwwaiche.org/cep

F3 (Flexible, Fast, and Future) Factory. 2013; www.f3factory.com/scripts/pages/en/home.php

D. Schmalz, F. Stenger, A. Brodhagen, A. Schweiger, T; Bieringer, C. Dreiser, Towards modularization and standardization of chemical production units: statu quo, development needs, and current activities, Dechema Praxisforum Future Production Concepts in Chemical Industry, April 27-28th 2016, Frankfurt.

AIChE. 2016. U.S. Department of Energy taps AIChE to lead Rapid Advancement in Process Intensification (RAPID) Modular Process Intensification Institute. News Release, Dec. 9. http//www.aiche.orga/about/press/releases/12-20- 2016/us-department-energy-taps-aiche-lead-rapid-modularprocess- intensification-institute

I. Rosetti, Continuous flow (micro)reactors for heterogeneous catalyzed reactions: Main design and modelling issues, Catalysis Today 308 (2018) 20-31. https://doi.org/10.1016/j.cattod.2017.09.040 DOI: https://doi.org/10.1016/j.cattod.2017.09.040

A.I. Shallan, P. Smejkal, M. Corban, R.M. Guijt, M.C. Breamore, Cost-effective three-dimensional printing of visible transparent microchips within minutes, Anal. Chem. 86 (2014) 3124-3130. https://doi.org/10.1021/ac4041857 DOI: https://doi.org/10.1021/ac4041857

A.J. Capel, S. Edmonson, S.D.R. Christies, R.D. Goodrige, R.J. Bibb, M. Thurstans, Design and additive manufacture for flow chemistry, Lab Chip 13 (2013) 4583-4590. https://doi.org/10.1039/c3lc50844g DOI: https://doi.org/10.1039/c3lc50844g

M.D. Symes, P.J. Kitson, J. Yan, C.J. Richmond, G.J. Cooper, et al., Integrated 3D-printed reactionware for chemical synthesis and analysis. Nat. Chem. 4 (2012) 349- 354. DOI: https://doi.org/10.1038/nchem.1313

R. Faure, M. Flin, P. del Gallo, M. Wagner, Add It Up, The Chemical Engineer, October 2018, www://thechemicalengineer.com/features/add-it-up/

V. Santos-Moreau, J.M. Newsam, J.C. Charpentier, Towards the laboratory of the future for the factory of the future, Oil & Gas Science and technology 70 (2015), 395-403. https://doi.org/10.2516/ogst/2015006 DOI: https://doi.org/10.2516/ogst/2015006

C. Parra-Cabrera, C. Achille, S. Khun, R. Ameloot, 3D printing in chemical engineering and catalytic technology: Structures catalysts, mixers and reactors, Chem. Soc. Rev. 47 (2018) 209-230. DOI: https://doi.org/10.1039/C7CS00631D

J.A. Arrieta-Escobar, F.P. Bernardo, A. Orjuela, M. Camargo, L. Morel, Incorporation of Heuristic Knowledge in the Optimal Design of Formulated Products: Application to a Cosmetic Emulsion, Computers & Chemical Engineering (2018), https://doi.org/10.1016/j.compchemeng.2018.08.032. DOI: https://doi.org/10.1016/j.compchemeng.2018.08.032

Downloads

Published

2019-06-10

Issue

Section

Articles

How to Cite

1.
In the Framework of Global Trade, Sustainability and Industry Demand for Innovative Process and Technologies, what kind of Modern “Green” Chemical Engineering is Required for the Design of “the Factory of the Future”?. Int. J. Pet. Technol. [Internet]. 2019 Jun. 10 [cited 2026 Feb. 13];6:7-29. Available from: https://avantipublishers.com/index.php/ijpt/article/view/823

Similar Articles

51-60 of 67

You may also start an advanced similarity search for this article.