Attention Mechanisms Evaluated on Stenosis Detection using X-ray Angiography Images

Authors

  • Emmanuel Ovalle-Magallanes University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8km, Comunidad de Palo Blanco, Salamanca 36885, Mexico. https://orcid.org/0000-0002-0689-520X
  • Dora E. Alvarado-Carrillo Center for Research in Mathematics (CIMAT), A.C. Jalisco S/N, Col. Valenciana, Guanajuato 36000, Mexico. https://orcid.org/0000-0003-1984-7546
  • Juan Gabriel Avina-Cervantes University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8km, Comunidad de Palo Blanco, Salamanca 36885, Mexico. https://orcid.org/0000-0003-1730-3748
  • Ivan Cruz-Aceves Center for Research in Mathematics (CIMAT), A.C. Jalisco S/N, Col. Valenciana, Guanajuato 36000, Mexico.
  • Jose Ruiz-Pinales University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8km, Comunidad de Palo Blanco, Salamanca 36885, Mexico.
  • Jose Luis Contreras-Hernandez University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8km, Comunidad de Palo Blanco, Salamanca 36885, Mexico. https://orcid.org/0000-0003-0405-5554

DOI:

https://doi.org/10.15377/2409-5761.2022.09.5

Keywords:

Medical Imaging, Stenosis Detection, Attention Mechanisms, X-ray Coronary Angiography, Convolutional Neural Networks

Abstract

Coronary stenosis results from unnatural narrowing of the heart arteries due to the accumulation of adipose depots, leading to different heart diseases and yielding top mortality worldwide. Thus far, deep learning-based methods for automatic stenosis over X-ray Coronary Angiography (XCA) have employed state-of-the-art architectures to solve the ImageNet challenge. With the advance of deep learning, contemporary architectures incorporated a variety of attention mechanisms to improve performance. Therefore, this paper presents a study of three attention mechanisms for stenosis detection in XCA images. Extensive experiments and comparisons over different Residual backbone networks are presented to verify the effectiveness of including such attention modules. An improvement of 4%, 10%, and 10% on the accuracy, recall, and F1-score was achieved using the approach, reaching mean values of 0.8787, 0.8610, and 0.8732, respectively.

Downloads

Download data is not yet available.

Author Biographies

  • Emmanuel Ovalle-Magallanes, University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8km, Comunidad de Palo Blanco, Salamanca 36885, Mexico.

    Telematics and Digital Signal Processing Research Groups (CAs), Engineering Division, Campus Irapuato-Salamanca

  • Juan Gabriel Avina-Cervantes, University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8km, Comunidad de Palo Blanco, Salamanca 36885, Mexico.

    Telematics and Digital Signal Processing Research Groups (CAs), Engineering Division, Campus Irapuato-Salamanca

  • Jose Ruiz-Pinales, University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8km, Comunidad de Palo Blanco, Salamanca 36885, Mexico.

    Telematics and Digital Signal Processing Research Groups (CAs), Engineering Division, Campus Irapuato-Salamanca

  • Jose Luis Contreras-Hernandez, University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8km, Comunidad de Palo Blanco, Salamanca 36885, Mexico.

    Telematics and Digital Signal Processing Research Groups (CAs), Engineering Division, Campus Irapuato-Salamanca

References

Sarvamangala DR, Kulkarni RV. Convolutional neural networks in medical image understanding: a survey. Evolutionary intelligence, pages 2021; 1-22. https://doi.org/10.1007/s12065-020-00540-3. DOI: https://doi.org/10.1007/s12065-020-00540-3

Mohapatra S, Swarnkar, Das J. Deep convolutional neural network in medical image processing. In Handbook of deep learning in biomedical engineering. pages 25-60. Elsevier, 2021. https://doi.org/10.1016/B978-0-12-823014-5.00006-5. DOI: https://doi.org/10.1016/B978-0-12-823014-5.00006-5

Althnian A, AlSaeed D, Al-Baity H, Samha A, Bin Dris A, Alzakari N, et al. Impact of Dataset Size on Classification Performance: An Empirical Evaluation in the Medical Domain. Applied Sciences, 2021; 11(2): 796. https://doi.org/10.3390/app11020796. DOI: https://doi.org/10.3390/app11020796

Hammernik K, Schlemper J, Qin C, Duan J, Summers RM, Rueckert D. Systematic evaluation of iterative deep neural networks for fast parallel MRI reconstruction with sensitivity-weighted coil combination. Magnetic Resonance in Medicine, 2021; 86(4): 1859-1872. https://doi.org/10.1002/mrm.28827. DOI: https://doi.org/10.1002/mrm.28827

Shorten C, Khoshgoftaar TM. A survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 2019; 6(1): 1-48. https://doi.org/10.1186/s40537-019-0197-0. DOI: https://doi.org/10.1186/s40537-019-0197-0

Yosinski J, Clune J, Bengio Y, Lipson H. How Transferable Are Features in Deep Neural Networks? In Proceedings of the 27th International Conference on Neural Information Processing Systems, 2014; 2(14): 3320-3328. Montreal, Canada, dec MIT Press.

Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018; 7132-7141. Salt Lake City, UT, USA, Jun https://doi.org/10.1109/CVPR.2018.00745. DOI: https://doi.org/10.1109/CVPR.2018.00745

Woo S, Park J, Lee J-Y, Kweon IS. CBAM: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision, 2018; 3-19, Munich, Germany, https://doi.org/10.1007/978-3-030-01234-2 1. DOI: https://doi.org/10.1007/978-3-030-01234-2_1

Wang Q, Wu B, Zhu P, Li P, Zuo W, Hu Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2020; 11531-11539, Seattle, WA, USA, Jun https://doi.org/10.1109/CVPR42600.2020.01155. DOI: https://doi.org/10.1109/CVPR42600.2020.01155

World Health Organization. Cardiovascular Diseases (CVDs). https://www.who.int/news-room/fact-sheets/detail/ cardiovascular-diseases-(cvds), Nov 2021.

Johal GS, Goel S, Kini A. Coronary Anatomy and Angiography. In Practical Manual of Interventional Cardiology, 2021; 35-49. DOI: https://doi.org/10.1007/978-3-030-68538-6_3

Manson EN, Ampoh VA, Fiagbedzi E, Amuasi JH, Flether JJ, Schandorf C. Image noise in radiography and tomography: Causes, effects and reduction techniques. Current Trends in Clinical & Medical Imaging, 2019; 2(5): 555620. https://doi.org/10.19080/CTCMI.2019.03.555620.

Chang C-F, Chang K-H, Lai C-H, Lin T-H, Liu T-J, Lee W-L, et al. Clinical outcomes of coronary artery bifurcation disease patients underwent Culotte two-stent technique: a single center experience. BMC Cardiovascular Disorders, 2019; 19(1): 1-8. https://doi.org/10.1186/s12872-019-1192-2. DOI: https://doi.org/10.1186/s12872-019-1192-2

Zhao C, Vij A, Malhotra S, Tang J, Tang H, Pienta D, et al. Automatic extraction and stenosis evaluation of coronary arteries in invasive coronary angiograms. Computers in Biology and Medicine, 2021; 136: 104667. https://doi.org/10.1016/j.compbiomed.2021.104667. DOI: https://doi.org/10.1016/j.compbiomed.2021.104667

Zhou Z, Siddiquee MMR, Tajbakhsh N, Liang J. UNet++: A Nested U-Net Architecture for Medical Image Segmentation. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2018; 3-11. https://doi.org/10.1007/978-3-030-00889-5 1. DOI: https://doi.org/10.1007/978-3-030-00889-5_1

Cong C, Kato Y, Vasconcellos HD, Lima J, Venkatesh B. Automated Stenosis Detection and Classification in X-ray Angiography Using Deep Neural Network. In International Conference on Bioinformatics and Biomedicine (BIBM), 2019; 1301-1308. San Diego, CA, USA, IEEE. https://doi.org/10.1109/BIBM47256.2019.8983033. DOI: https://doi.org/10.1109/BIBM47256.2019.8983033

Wu W, Zhang J, Xie H, Zhao Y, Zhang S, Gu L. Automatic detection of coronary artery stenosis by convolutional neural network with temporal constraint. Computers in Biology and Medicine, 2020; 118: 103657. https://doi.org/10.1016/j.compbiomed.2020.103657. DOI: https://doi.org/10.1016/j.compbiomed.2020.103657

Pang K, Ai D, Fang H, Fan J, Song H, Yang J. Stenosis-DetNet: Sequence consistency-based stenosis detection for X-ray coronary angiography. Computerized Medical Imaging and Graphics, 2021; 89: 101900. https://doi.org/10.1016/j.compmedimag.2021.101900. DOI: https://doi.org/10.1016/j.compmedimag.2021.101900

Antczak K, Liberadzki L. Stenosis Detection with Deep Convolutional Neural Networks. In MATEC Web of Conferences, 2018; 210: 04001. EDP Sciences, https://doi.org/10.1051/matecconf/201821004001. DOI: https://doi.org/10.1051/matecconf/201821004001

Ovalle-Magallanes El, Avina-Cervantes JG, Cruz-Aceves I, Ruiz-Pinales J. Transfer Learning for Stenosis Detection in X-ray Coronary Angiography. Mathematics, 2020; 8(9): 1510. https://doi.org/10.3390/math8091510. DOI: https://doi.org/10.3390/math8091510

Sameh S, AbdelAzim M, AbdelRaouf A. Narrowed coronary artery detection and classification using angiographic scans. In 2017 12th International Conference on Computer Engineering and Systems (ICCES), 2017; 73-79. Cairo, Egypt, IEEE. https://doi.org/10.1109/ICCES.2017.8275280. DOI: https://doi.org/10.1109/ICCES.2017.8275280

Kishore AHN, Jayanthi VE. Automatic stenosis grading system for diagnosing coronary artery disease using coronary angiogram. International Journal of Biomedical Engineering and Technology, 2019; 31(3): 260-277. https://doi.org/10.1504/IJBET.2019.102974. DOI: https://doi.org/10.1504/IJBET.2019.10022819

Wan T, Feng H, Tong C, Li D, Qin Z. Automated Identification and Grading of Coronary Artery Stenoses with X-ray Angiography. Computer Methods and Programs in Biomedicine, 2018; 167: 13-22. https://doi.org/10.1016/j.cmpb.2018.10.013. DOI: https://doi.org/10.1016/j.cmpb.2018.10.013

Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE, Anguelov D, et al. Going deeper with convolutions. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015; 1-9. IEEE Computer Society, 2015. https://doi.org/10.1109/CVPR.2015.7298594.

Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems, 2012; 25: 1097-1105. https://doi.org/10.1145/3065386. DOI: https://doi.org/10.1145/3065386

Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015; 1-14, URL http://arxiv.org/abs/1409.1556.

He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016; 770-778. IEEE Computer Society, 2016. https://doi.org/10.1109/CVPR.2016.90.

Zandigohar M, Erdogmus D, Schirner G. NetCut: Real-Time DNN Inference Using Layer Removal. In 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), 2021; 1845-1850, Grenoble, France, IEEE. https://doi.org/10.23919/DATE51398.2021.9474052. DOI: https://doi.org/10.23919/DATE51398.2021.9474052

Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014; https://arxiv.org/ abs/1412.6980.

Loshchilov I, Hutter F. SGDR: Stochastic Gradient Descent with Warm Restarts. arXiv preprint arXiv:1608.03983, 2016; https://arxiv.org/ abs/1608.03983.

Wightman R. PyTorch Image Models. https://github.com/rwightman/ pytorch-image-models, 2019.

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In IEEE International Conference on Computer Vision (ICCV), 2017; 618-626, Venecia, Italia, oct 2017. IEEE Computer Society. https://doi.org/10.1109/ICCV.2017.74 DOI: https://doi.org/10.1109/ICCV.2017.74

Downloads

Published

2022-05-24

Issue

Section

AI & Metaheuristic Optimization Methods in Engineering & Biomedical Application

How to Cite

Attention Mechanisms Evaluated on Stenosis Detection using X-ray Angiography Images. (2022). Journal of Advances in Applied & Computational Mathematics, 9, 62-75. https://doi.org/10.15377/2409-5761.2022.09.5

Similar Articles

11-18 of 18

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)