Fixed Point Theory in Graph-Structured Controlled Partial Metric Spaces with Applications to Integral Equations

Authors

  • John Pamba Department of Information and Communication Technology, Zambia University College of Technology, Ndola, Zambia https://orcid.org/0009-0002-0931-6725
  • Hamilton Chirwa Department of Mathematics and Statistics, Mukuba University, Kitwe, Zambia
  • Yolam Sakala Department of Mathematics and Statistics, Mukuba University, Kitwe, Zambia https://orcid.org/0009-0004-6129-1750
  • Alex Samuel Mungo Department of Mathematics and Statistics, Mukuba University, Kitwe, Zambia https://orcid.org/0009-0001-5376-2418

DOI:

https://doi.org/10.15377/2409-5761.2025.12.9

Keywords:

Digraph structure, Fixed point theorems, Multivalued mappings, Pompeiu-hausdorff metric, Nonlinear integral equations, Controlled partial metric spaces, Generalised graph\phi-contractions

Abstract

In this paper, we introduce and investigate a new class of mappings called generalised graph \phi-contractions within the setting of Generalised Hausdorff Controlled Partial Metric (GHCPM) spaces. This framework integrates the structure of a graph with a controlled partial metric, providing a natural generalization of classical fixed point theories. Our study extends previous results by incorporating mappings defined on collections of non-empty closed and bounded subsets of a GHCPM space, and introducing contractive conditions governed by an upper semi-continuous and non-monotonic function. By leveraging the graph structure on GHCPM, we define a generalised graph contraction as a mapping that respects the connectivity induced by the graph while satisfying a contractive inequality involving the Hausdorff controlled partial metric. We establish novel fixed point theorems for such contractions, which unify and extend several existing results in the literature. To illustrate the applicability and generality of our results, we demonstrate the existence of solutions for nonlinear integral equations of Fredholm type. Concrete examples demonstrating the existence of fixed points under the proposed framework are also provided. These results open new directions in the study of fixed point theory in generalized metric spaces with additional structure.

Downloads

Download data is not yet available.

References

Banach S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund Math. 1922; 3: 133-81. https://doi.org/10.4064/fm-3-1-133-181 DOI: https://doi.org/10.4064/fm-3-1-133-181

Brouwer L. Uber Abbildung von Mannigfaltigkeiten. Math Ann. 1911; 71(1): 97-115. https://doi.org/10.1007/BF01456931 DOI: https://doi.org/10.1007/BF01456931

Kirk WA. Fixed point theory in Banach spaces. Fixed Point Theory Appl. 2003; 2003(2): 1-21.

Granas A, Dugundji J. Fixed Point Theory. Springer; 2003. https://doi.org/10.1007/978-0-387-21593-8 DOI: https://doi.org/10.1007/978-0-387-21593-8

Goebel K, Kirk W. Topics in Metric Fixed Point Theory. Cambridge University Press; 1990. https://doi.org/10.1017/CBO9780511526152 DOI: https://doi.org/10.1017/CBO9780511526152

Bucur A. About applications of the fixed point theory. Sci Bull. 2017; 22(1): 13-7. https://doi.org/10.1515/bsaft-2017-0002 DOI: https://doi.org/10.1515/bsaft-2017-0002

Singh S, Watson B, Srivastava P. Application of fixed points to approximation theory. In: Fixed Point Theory and Best Approximation: The KKM-map Principle. Mathematics and Its Applications, vol 424. Springer; 1997. p. 79-102. https://doi.org/10.1007/978-94-015-8822-5 DOI: https://doi.org/10.1007/978-94-015-8822-5

Karlsson A. A metric fixed point theorem and some of its applications. Geom Funct Anal. 2024; 34: 486-511. https://doi.org/10.1007/s00039-024-00658-x DOI: https://doi.org/10.1007/s00039-024-00658-x

Jachymski J. The contraction principle for mappings on a metric space with a graph. Proc Amer Math Soc. 2008; 136(4): 1359-73. https://doi.org/10.1090/S0002-9939-07-09110-1 DOI: https://doi.org/10.1090/S0002-9939-07-09110-1

Nazir T, Ali Z, Jogan SN. On a class of fixed points for set contractions on partial metric spaces with a digraph. Turk J Math. 2010; 34: 559-70.

Li J, Shi S. Fixed point theorems for contractive mappings on metric spaces with a graph. J Math Anal Appl. 2011; 386(1): 39-45. https://doi.org/10.1016/j.jmaa.2011.01.026 DOI: https://doi.org/10.1186/1687-1812-2011-93

Abbas M, Jungck G. Common fixed points for noncommuting mappings on metric spaces. Int J Math Math Sci. 2008; 2008: Article ID 376051, 9 p. https://doi.org/10.1016/j.jmaa.2007.09.070 DOI: https://doi.org/10.1016/j.jmaa.2007.09.070

Berzig M, Jleli M, Samet B. Generalized contractions on metric spaces with a graph. Fixed Point Theory Appl. 2013; 2013: 56. https://doi.org/10.1186/1687-1812-2013-56 DOI: https://doi.org/10.1186/1687-1812-2012-210

Aydi H, Samet B, Vetro C. Fixed point theorems for mappings on metric spaces endowed with a graph. Nonlinear Anal. 2014; 99: 277-86. https://doi.org/10.1016/j.na.2013.12.012 DOI: https://doi.org/10.1016/j.na.2013.12.012

Öztürk M, Girgin E. On some fixed-point theorems for ψ-contraction on metric space involving a graph. J Math Anal Appl. 2014; 2014(39): 1-10. https://doi.org/10.1186/1029-242X-2014-39 DOI: https://doi.org/10.1186/1029-242X-2014-39

Alfuraidan MR. Remarks on monotone multivalued mappings on a metric space with a graph. J Inequal Appl. 2015; 2015(1): 1-7. https://doi.org/10.1186/s13660-015-0712-6 DOI: https://doi.org/10.1186/s13660-015-0712-6

Batra R, Vashistha S. Fixed points of an F-contraction on metric spaces with a graph. Int J Comput Math. 2014; 91(12): 2483-90. https://doi.org/10.1080/00207160.2014.887700 DOI: https://doi.org/10.1080/00207160.2014.887700

Batra R, Gupta R, Sahni P. Fixed point existence results of F-Kannan type contraction on a metric space with directed graph. J Math Comput Sci. 2021; 11: 5181-95. https://doi.org/10.28919/jmcs/5929 DOI: https://doi.org/10.28919/jmcs/5929

Batra R, Vashistha S, Kumar R. Fixed point theorems under w-distance on a metric space endowed with a graph. J Nonlinear Anal Appl. 2015; 2015(1): 57-65. https://doi.org/10.5899/2015/jnaa-00258 DOI: https://doi.org/10.5899/2015/jnaa-00258

Chifu C, Petrusel G. New results on coupled fixed point theory in metric spaces endowed with a directed graph. Fixed Point Theory Appl. 2014; 2014(1): 151. https://doi.org/10.1186/1687-1812-2014-151 DOI: https://doi.org/10.1186/1687-1812-2014-151

Reich S, Zaslavski AJ. Contractive mappings on metric spaces with graphs. Mathematics. 2021; 9(21): 2774. https://doi.org/10.3390/math9212774 DOI: https://doi.org/10.3390/math9212774

Abbas M, Alfuraidan MR, Khan AR, Nazir T. Fixed point results for set-contractions on metric spaces with a directed graph. Fixed Point Theory Appl. 2015; 2015: 14. https://doi.org/10.1186/s13663-015-0263-z DOI: https://doi.org/10.1186/s13663-015-0263-z

Chaira K, Kabil M, Kamouss A. Fixed point results for mathematical equation-contractile mappings in generalized metric spaces with a graph. Math Probl Eng. 2021; 2021: 8840347. https://doi.org/10.1155/2021/8840347 DOI: https://doi.org/10.1186/s13663-021-00690-8

Jiddah JA, Shagari MS. Graphical approach to the study of fixed point results involving hybrid contractions. Results Control Optim. 2024; 14: 100394. https://doi.org/10.1016/j.rico.2024.100394 DOI: https://doi.org/10.1016/j.rico.2024.100394

Charoensawan P. Common fixed point theorems for Geraghty's type contraction mapping with two generalized metrics endowed with a directed graph in JS-metric spaces. Carpath J Math. 2018; 34(3): 305-12. https://doi.org/10.37193/CJM.2018.03.04 DOI: https://doi.org/10.37193/CJM.2018.03.04

Mlaiki N, Aydi H, Souayah N, Abdeljawad T. Controlled metric type spaces and the related contraction principle. Mathematics. 2018; 6(10): 194. https://doi.org/10.3390/math6100194 DOI: https://doi.org/10.3390/math6100194

Kamran T, Samreen M, Ain QU. A generalization of b-metric space and some fixed point theorems. Mathematics. 2017; 5(2): 19. https://doi.org/10.3390/math5020019 DOI: https://doi.org/10.3390/math5020019

Karapinar E, Agarwal RP. Fixed point theorems on b-metric spaces. In: Fixed Point Theory in Generalized Metric Spaces. Synthesis Lectures on Mathematics and Statistics. Springer; 2022. https://doi.org/10.1007/978-3-031-14969-6_2 DOI: https://doi.org/10.1007/978-3-031-14969-6

Sanatammappa N, Krishnakumar R, Dinesh K. Some results in b-metric spaces. Malaya J Matematik. 2021; 9(1): 539-41. https://doi.org/10.26637/MJM0901/0090 DOI: https://doi.org/10.26637/MJM0901/0090

Suzuki T. Basic inequality on a b-metric space and its applications. J Inequal Appl. 2017; 2017(1): 1-11. https://doi.org/10.1186/s13660-017-1528-3 DOI: https://doi.org/10.1186/s13660-017-1528-3

Abuloha M, Rizk D, Abodayeh K, Mlaiki N, Abdeljawad T. New results in controlled metric type spaces. J Math. 2021; 2021: 5575512. https://doi.org/10.1155/2021/5575512 DOI: https://doi.org/10.1155/2021/5575512

Uddin F, Adeel F, Javed K, Muhammad A, Arshad M. Double controlled M-metric spaces and some fixed point results. AIMS Math. 2022; 7(8): 10. https://doi.org/10.3934/math.2022838 DOI: https://doi.org/10.3934/math.2022838

Ahmad H. Analysis of fixed points in controlled metric type spaces with application. In: Younis M, Chen L, Singh D, editors. Recent Developments in Fixed-Point Theory. Industrial and Applied Mathematics. Springer; 2024. https://doi.org/10.1007/978-981-99-9546-2_9 DOI: https://doi.org/10.1007/978-981-99-9546-2_9

Mlaiki N, Aydi H, Souayah N, Abdeljawad T. An improvement of recent results in controlled metric type spaces. Filomat. 2020; 34(6): 1853-62. https://doi.org/10.2298/FIL2006853M DOI: https://doi.org/10.2298/FIL2006853M

Ma Z, Ahmad J, Al-Mazrooei AE. Fixed point results for generalized contractions in controlled metric spaces with applications. AIMS Math. 2023; 8(1): 529-49. https://doi.org/10.3934/math.2023025 DOI: https://doi.org/10.3934/math.2023025

Alamgir N, Kiran Q, Isik H, Aydi H. Fixed point results via Hausdorff controlled type metric. Adv Differ Equ. 2020; 25: 1-12. https://doi.org/10.1186/s13662-020-2491-8 DOI: https://doi.org/10.1186/s13662-020-2491-8

Pamba J, Tembo ID. On fixed point results of Suzuki-type contractions on controlled metric spaces with applications. Int J Sci Technol Soc. 2025; 13(5): 205-10. https://doi.org/10.11648/j.ijsts.20251305.14 DOI: https://doi.org/10.11648/j.ijsts.20251305.14

Abbas M, Nazir T. Fixed point of mappings on a metric space endowed with a graphic structure. In: Ruzhansky M, Dutta H, editors. Advanced Topics in Mathematical Analysis. CRC Press, Taylor & Francis Group; 2019. p. 285-98. https://doi.org/10.1201/9781351142120-9 DOI: https://doi.org/10.1201/9781351142120-9

Abbas M, Nazir T. Fixed point of generalized weakly contractive mappings in ordered partial metric spaces. Fixed Point Theory Appl. 2012; 2012: 19. https://doi.org/10.1186/1687-1812-2012-1 DOI: https://doi.org/10.1186/1687-1812-2012-1

Hassen A, Mujahid A, Calogero V. Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces. Topology Appl. 2012; 159: 3234-42. https://doi.org/10.1016/j.topol.2012.06.012 DOI: https://doi.org/10.1016/j.topol.2012.06.012

Jachymski J, Jozwik I. Nonlinear contractive conditions: a comparison and related problems. Banach Center Publ. 2007; 77: 123-46. https://doi.org/10.4064/bc77-0-10 DOI: https://doi.org/10.4064/bc77-0-10

Latif A, Nazir T, Kutbi MA. Common fixed point results for class of set-contraction mappings endowed with a directed graph. Rev R Acad Cienc Exactas Fís Nat Ser A Mat. 2019; 113(4): 3207-22. https://doi.org/10.1007/s13398-019-00689-2 DOI: https://doi.org/10.1007/s13398-019-00689-2

Romaguera S. A Kirk type characterization of completeness for partial metric spaces. Fixed Point Theory Appl. 2010; 2010: 493298. https://doi.org/10.1155/2010/493298 DOI: https://doi.org/10.1155/2010/493298

Schellekens MP. The correspondence between partial metrics and semivaluations. Theor Comput Sci. 2004; 315: 135-49. https://doi.org/10.1016/j.tcs.2003.11.016 DOI: https://doi.org/10.1016/j.tcs.2003.11.016

Souayah N, Mrad M. On fixed point results in controlled partial metric type spaces with a graph. Mathematics. 2019; 7(8): 710. https://doi.org/10.3390/math8010033 DOI: https://doi.org/10.3390/math8010033

Pamba J, Nazir T. On some fixed point results of Banach type contraction in controlled G-metric spaces. Nonlinear Anal Comput Tech. Springer Proc Math Stat. 2025; 450: 123-38. https://doi.org/10.1007/978-981-96-6038-4_10 DOI: https://doi.org/10.1007/978-981-96-6038-4_10

Manafian J, Alimirzaluo E, Nadjafikhah M. Conservation laws and exact solutions of the (3+1)-dimensional Jimbo-Miwa equation. Adv Differ Equ. 2021; 2021: 424. https://doi.org/10.1186/s13662-021-03578-4 DOI: https://doi.org/10.1186/s13662-021-03578-4

Manafian J. An optimal Galerkin-homotopy asymptotic method applied to the nonlinear second-order BVPs. Proc Inst Math Mech (NAS Azerbaijan). 2021;47(1): 156-82. https://doi.org/10.30546/2409-4994.47.1.156 DOI: https://doi.org/10.30546/2409-4994.47.1.156

Mehdizad Tekiyeh R, Manafian J, Baskonus HM, Düşünceli F. Applications of He's semi-inverse variational method and ITEM to the nonlinear long-short wave interaction system. Int J Adv Appl Sci. 2019; 6(8): 53-64. https://doi.org/10.21833/ijaas.2019.08.008 DOI: https://doi.org/10.21833/ijaas.2019.08.008

Bukatin M, Kopperman R, Matthews S, Pajoohesh H. Partial metric spaces. Am Math Mon. 2009; 116(8): 708-18. https://doi.org/10.4169/193009709X460831 DOI: https://doi.org/10.4169/193009709X460831

Samet B, Vetro C, Vetro F. From metric spaces to partial metric spaces. Fixed Point Theory Appl. 2013; 2013: 5. https://doi.org/10.1186/1687-1812-2013-5 DOI: https://doi.org/10.1186/1687-1812-2013-5

Heckmann R. Approximation of metric spaces by partial metric spaces. Appl Categ Struct. 1999; 7: 71-83. https://doi.org/10.1023/A:1008684018933 DOI: https://doi.org/10.1023/A:1008684018933

Varughese AR, Bairagya I. Interstate variation in household spending on education in India: does it influence educational status? Struct Change Econ Dyn. 2021; 59: 405-15. https://doi.org/10.1016/j.strueco.2021.09.015 DOI: https://doi.org/10.1016/j.strueco.2021.09.015

Alicioglu G, Sun B. A survey of visual analytics for explainable artificial intelligence methods. Comput Graph. 2022; 102: 502-20. https://doi.org/10.1016/j.cag.2021.09.002 DOI: https://doi.org/10.1016/j.cag.2021.09.002

Rezazadeh H, Zabihi A, Davodi AG, Ansari R, Ahmad H, Yao SW. New optical solitons of double Sine-Gordon equation using exact solutions methods. Results Phys. 2023; 39: 106452. https://doi.org/10.1016/j.rinp.2023.106452 DOI: https://doi.org/10.1016/j.rinp.2023.106452

Khan AY, Mkhatshwa MP, Mondal S, Khumalo M, Noor NFM. An overlapping grid spectral collocation analysis on a newly developed hybrid nanofluid flow model. Propuls Power Res. 2024; 1: 98-117. https://doi.org/10.1016/j.jppr.2023.12.001 DOI: https://doi.org/10.1016/j.jppr.2023.12.001

Taparia A, Bashir AK, Zhu Y, Gdekallu TR, Nath K. Transforming satellite imagery into vector maps using modified GANs. Alexandria Eng J. 2024; 109: 792-806. https://doi.org/10.1016/j.aej.2024.09.074 DOI: https://doi.org/10.1016/j.aej.2024.09.074

Downloads

Published

2025-11-28

Issue

Section

Articles

How to Cite

Fixed Point Theory in Graph-Structured Controlled Partial Metric Spaces with Applications to Integral Equations . (2025). Journal of Advances in Applied & Computational Mathematics, 12, 121-142. https://doi.org/10.15377/2409-5761.2025.12.9

Similar Articles

11-20 of 57

You may also start an advanced similarity search for this article.