Equivalence Analysis of Two Different Methods for Solving Fuzzy Linear Systems

Authors

  • Yahui Liu College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China https://orcid.org/0009-0009-6025-7661
  • Xinyi Duan College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China
  • Xiaobin Guo College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, China https://orcid.org/0000-0002-5630-2345

DOI:

https://doi.org/10.15377/2409-5761.2025.12.14

Keywords:

Equivalence, Fuzzy numbers, Matrix computation, Fuzzy linear systems

Abstract

In this paper, the distinction and connection between a new approach introduced in [29] and the traditional method presented in [1] for some semi-fuzzy linear systems are discussed. Firstly, the consistency of some primary algebraic operations between the a-center and a–radius of a fuzzy number x~\widetilde{x}x and the a-levels of a fuzzy number x~\widetilde{x}x is analyzed. Secondly, the equivalence property of the computing model and the strong fuzzy solution in recent paper [29] by discussing the proposed method twenty-eight years ago [1] are considered. Then, the dual fuzzy linear systems are also investigated in a similar way. Finally, two classical and well known examples are given to show the validity of the new method in which the idea and approach can be applied to simplifying calculation of any semi-fuzzy linear systems.

Downloads

Download data is not yet available.

References

Friedman M, Ma M, Kandel A. Fuzzy linear systems. Fuzzy Sets Syst. 1998; 96: 201-9. https://doi.org/10.1016/S0165-0114(96)00270-9 DOI: https://doi.org/10.1016/S0165-0114(96)00270-9

Wu CX, Ma M. Embedding problem of fuzzy number space: Part III. Fuzzy Sets Syst. 1992; 46: 281-6. https://doi.org/10.1016/0165-0114(92)90142-Q DOI: https://doi.org/10.1016/0165-0114(92)90142-Q

Abbasbandy S, Otadi M, Mosleh M. Minimal solution of general dual fuzzy linear systems. Chaos Solitons Fractals. 2008; 29: 638-52. https://doi.org/10.1016/j.chaos.2006.10.045 DOI: https://doi.org/10.1016/j.chaos.2006.10.045

Allahviranloo T. Numerical methods for fuzzy system of linear equations. Appl Math Comput. 2004; 153: 493-502. https://doi.org/10.1016/S0096-3003(03)00793-8 DOI: https://doi.org/10.1016/S0096-3003(03)00793-8

Allahviranloo T. Successive over relaxation iterative method for fuzzy system of linear equations. Appl Math Comput. 2005; 162: 189-96. https://doi.org/10.1016/j.amc.2003.12.085 DOI: https://doi.org/10.1016/j.amc.2003.12.085

Allahviranloo T. The Adomian decomposition method for fuzzy system of linear equations. Appl Math Comput. 2005; 163: 553-63. https://doi.org/10.1016/j.amc.2004.02.020 DOI: https://doi.org/10.1016/j.amc.2004.02.020

Allahviranloo T, Ghanbari M, Nuraei R. A note on “Fuzzy linear systems”. Fuzzy Sets Syst. 2011; 177: 87-92. https://doi.org/10.1016/j.fss.2011.02.010 DOI: https://doi.org/10.1016/j.fss.2011.02.010

Asady B, Abbasbandy S, Alavi M. Fuzzy general linear systems. Appl Math Comput. 2005; 169: 34-40. https://doi.org/10.1016/j.amc.2004.10.042 DOI: https://doi.org/10.1016/j.amc.2004.10.042

Dehghan M, Hashemi B, Ghatee M. Solution of the full fuzzy linear systems using iterative techniques. Chaos Solitons Fractals. 2007; 34: 316-36. https://doi.org/10.1016/j.chaos.2006.03.085 DOI: https://doi.org/10.1016/j.chaos.2006.03.085

Guo XB, Zhang K. Minimal solution of complex fuzzy linear systems. Adv Fuzzy Syst. 2016; 2016: 5293917. https://doi.org/10.1155/2016/5293917 DOI: https://doi.org/10.1155/2016/5293917

Allahviranloo T, Ghanbari M. A new approach to obtain algebraic solution of interval linear systems. Soft Comput. 2012; 16: 121-33. https://doi.org/10.1007/s00500-011-0739-7 DOI: https://doi.org/10.1007/s00500-011-0739-7

Allahviranloo T, Hosseinzadeh Lotfi F, Khorasani Kiasari M, Khezerloo M. On the fuzzy solution of LR fuzzy linear systems. Appl Math Model. 2013; 37: 1170-6. https://doi.org/10.1016/j.apm.2012.03.037 DOI: https://doi.org/10.1016/j.apm.2012.03.037

Babbar N, Kumar A, Bansal A. Solving fully fuzzy linear system with arbitrary triangular fuzzy numbers. Soft Comput. 2013; 17: 691-702. https://doi.org/10.1007/s00500-012-0941-2 DOI: https://doi.org/10.1007/s00500-012-0941-2

Basaran MA. Calculating fuzzy inverse matrix using fuzzy linear equation system. Appl Soft Comput. 2012; 12: 1810-3. https://doi.org/10.1016/j.asoc.2012.01.005 DOI: https://doi.org/10.1016/j.asoc.2012.01.005

Ghanbari M, Allahviranloo T, Nuraei R, Pedrycz W. A new effective approximate multiplication operation on LR fuzzy numbers and its application. Soft Comput. 2022; 26: 4103-13. https://doi.org/10.1007/s00500-022-06861-y DOI: https://doi.org/10.1007/s00500-022-06861-y

Gong ZT, Guo XB. Inconsistent fuzzy matrix equations and its fuzzy least squares solutions. Appl Math Model. 2011; 35: 1456-69. https://doi.org/10.1016/j.apm.2010.09.022 DOI: https://doi.org/10.1016/j.apm.2010.09.022

Gong ZT, Guo XB, Liu K. Approximate solution of dual fuzzy matrix equations. Inf Sci. 2014; 266: 112-33. https://doi.org/10.1016/j.ins.2013.12.054 DOI: https://doi.org/10.1016/j.ins.2013.12.054

Guo XB, Zhuo Q. Perturbation analysis of fully fuzzy linear system. J Intell Fuzzy Syst. 2023; 44: 5589-99. https://doi.org/10.3233/JIFS-222392 DOI: https://doi.org/10.3233/JIFS-222392

Guo XB, Chen Y, Zhuo Q. Generalized LR fuzzy eigenvectors of real symmetric matrices. J Intell Fuzzy Syst. 2023; 44: 7459-67. https://doi.org/10.3233/JIFS-222641 DOI: https://doi.org/10.3233/JIFS-222641

Guo XB, Shang DQ. Solving LR fuzzy linear matrix equation. Iran J Fuzzy Syst. 2019; 16: 33-44.

Guo XB, Wu LJ. Inconsistent LR fuzzy matrix equation. Math Probl Eng. 2020; 2020: 4065809. https://doi.org/10.1155/2020/4065809 DOI: https://doi.org/10.1155/2020/4065809

Guo XB, Zhang K. Solving fuzzy matrix equation of the form X ⊗ A = B ⊗. J Intell Fuzzy Syst. 2017; 32: 2771-8. https://doi.org/10.3233/JIFS-16895 DOI: https://doi.org/10.3233/JIFS-16895

Guo XB, Han YL. Further investigation to dual fuzzy matrix equation. J Intell Fuzzy Syst. 2017; 33: 2617-29. https://doi.org/10.3233/JIFS-17072 DOI: https://doi.org/10.3233/JIFS-17072

Guo XB, Fan XY, Lin HR. Approximate solution of complex LR fuzzy linear matrix equation. Trans Fuzzy Sets Syst. 2024; 3: 128-42.

Liu K, Guo XB. Perturbation bounds of semi LR fuzzy linear systems. Fuzzy Inf Eng. 2024; 16: 330-45. https://doi.org/10.26599/FIE.2024.9270049 DOI: https://doi.org/10.26599/FIE.2024.9270049

Wang GX, Li J. Approximations of fuzzy numbers by step type fuzzy numbers. Fuzzy Sets Syst. 2017; 310: 47-59. https://doi.org/10.1016/j.fss.2016.08.003 DOI: https://doi.org/10.1016/j.fss.2016.08.003

Abu Arqub O, Singh J, Alhodaly M. Adaptation of kernel functions-based approach with Atangana–Baleanu–Caputo distributed order derivative for solutions of fuzzy fractional Volterra and Fredholm integrodifferential equations. Math Methods Appl Sci. 2023; 46: 7613-8429. https://doi.org/10.1002/mma.7228 DOI: https://doi.org/10.1002/mma.7228

Abu Arqub O. Adaptation of reproducing kernel algorithm for solving fuzzy Fredholm–Volterra integrodifferential equations. Neural Comput Appl. 2017; 28: 1591-610. https://doi.org/10.1007/s00521-015-2110-x DOI: https://doi.org/10.1007/s00521-015-2110-x

Ghanbari M, Allahviranloo T, Pedrycz W. A straightforward approach for solving dual fuzzy linear systems. Fuzzy Sets Syst. 2022; 435: 89-106. https://doi.org/10.1016/j.fss.2021.04.007 DOI: https://doi.org/10.1016/j.fss.2021.04.007

Dubois D, Prade H. Operations on fuzzy numbers. J Syst Sci. 1978; 9: 613-26. https://doi.org/10.1080/00207727808941724 DOI: https://doi.org/10.1080/00207727808941724

Nahmias S. Fuzzy variables. Fuzzy Sets Syst. 1978; 2: 97-111. https://doi.org/10.1016/0165-0114(78)90011-8 DOI: https://doi.org/10.1016/0165-0114(78)90011-8

Zadeh LA. Fuzzy sets. Inf Control. 1965; 8: 338-53. https://doi.org/10.1016/S0019-9958(65)90241-X DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

Muzzioli S, Reynaerts H. Fuzzy linear systems of the form A₁x̃ + b̃₁ = A₂x̃ + b̃₂. Fuzzy Sets Syst. 2006; 157: 939-51. https://doi.org/10.1016/j.fss.2005.09.005 DOI: https://doi.org/10.1016/j.fss.2005.09.005

Downloads

Published

2025-12-28

Issue

Section

Articles

How to Cite

Equivalence Analysis of Two Different Methods for Solving Fuzzy Linear Systems. (2025). Journal of Advances in Applied & Computational Mathematics, 12, 231-242. https://doi.org/10.15377/2409-5761.2025.12.14

Similar Articles

1-10 of 59

You may also start an advanced similarity search for this article.