On Monotonic Solutions of A Nonlinear Integral Equation of Volterra Type

Authors

  • Osman Karakurt İnönü University, 44280, Malatya-Turkey
  • Ö. Faruk Temizer İnönü University, 44280, Malatya-Turkey

DOI:

https://doi.org/10.15377/2409-5761.2016.03.01.7

Keywords:

Nonlinear volterra integral equations, measure of noncompactness, fixed point theorem

Abstract

We study a nonlinear integral equation of Volterra type in the Banach space of real functions defined and continuous on a bounded and closed interval. Using a technique associated with measure of noncompactness we prove the existence of the nondecreasing solutions to a nonlinear integral equations of Volterra type in C [0, 1]. We give also one example satisfying the conditions of our main result but not satisfying the conditions of the main result in [1].

Downloads

Download data is not yet available.

Author Biographies

  • Osman Karakurt , İnönü University, 44280, Malatya-Turkey
    Faculty of Education
  • Ö. Faruk Temizer, İnönü University, 44280, Malatya-Turkey
    Faculty of Education

References

Caballero J, Rocha J and Sadarangani K. On monotonic solutions of an integral equation of Volterra type. Journal of Computational and Applied Mathematics 2005; 174: 119-133. http://dx.doi.org/10.1016/j.cam.2004.04.003 DOI: https://doi.org/10.1016/j.cam.2004.04.003

Agarwal RP, O'Regan D and Wong PJY. Positive Solutions of Differential and Integral Equations. Dordrecht, Kluwer Academic Publishers 1999. http://dx.doi.org/10.1007/978-94-015-9171-3 DOI: https://doi.org/10.1007/978-94-015-9171-3_22

Argyros IK. Quadratic Equations applications to Chandrasekhar's and related equations. Bull Austral Math Soc 1985; 32: 275-292. http://dx.doi.org/10.1017/S0004972700009953 DOI: https://doi.org/10.1017/S0004972700009953

Banas J and Goebel K. Measure of Noncompactness in Banach Spaces. New York, Marcel Dekker 1980.

Banas J and Olszowy L. Measure of Noncompactness related to monotoncity. Comment Math 2001; 41: 13-23.

Banas J and Sadarangani K. Solvabolity of Volterra-Stieltjes operator-integral equations and their applications. Comput Math Applic 2001; 41(12): 1535-1544. http://dx.doi.org/10.1016/S0898-1221(01)00118-3 DOI: https://doi.org/10.1016/S0898-1221(01)00118-3

Deimling K. Nonlinear Functional Analysis. Berlin, Springer- Verlag 1985. http://dx.doi.org/10.1007/978-3-662-00547-7 DOI: https://doi.org/10.1007/978-3-662-00547-7

Hu S, Khavanin M and Zhuang W. Integral equations arising in the kinetic theory of gases. Appl Analysis 1989; 34: 261-266. http://dx.doi.org/10.1080/00036818908839899 DOI: https://doi.org/10.1080/00036818908839899

O'Regan D and Meehan MM. Existence Theory for Nonlinear Integral and Integrodifferential Equations. Dordrecht, Kluwer Academic Publishers 1998. http://dx.doi.org/10.1007/978-94-011-4992-1 DOI: https://doi.org/10.1007/978-94-011-4992-1_2

Downloads

Published

2016-07-14

Issue

Section

Articles

How to Cite

On Monotonic Solutions of A Nonlinear Integral Equation of Volterra Type. (2016). Journal of Advances in Applied & Computational Mathematics, 3(1), 46-53. https://doi.org/10.15377/2409-5761.2016.03.01.7

Similar Articles

1-10 of 48

You may also start an advanced similarity search for this article.