Optical Soliton Solutions of Fokas-Lenells Equation via (m + 1/G')- Expansion Method

Authors

  • Bulut, Hasan Firat University, Elazig, Turkey
  • Khalid, Ban Jamal Firat University, Elazig, Turkey

DOI:

https://doi.org/10.15377/2409-5761.2020.07.3

Keywords:

Optical soliton solutions, Fokas-Lenells equation, (m 1/G')- Expansion Method

Abstract

In this research paper, we investigate some novel soliton solutions to the perturbed Fokas-Lenells equation by using the (m + 1/G') expansion method. Some new solutions are obtained and they are plotted in two and three dimensions. This technique appears as a suitable, applicable, and efficient method to search for the exact solutions of nonlinear partial differential equations in a wide range. All gained optical soliton solutions are substituted into the FokasLenells equation and they verify it. The constraint conditions are also given.

Downloads

Download data is not yet available.

Author Biographies

  • Bulut, Hasan, Firat University, Elazig, Turkey

    Department of Mathematics

  • Khalid, Ban Jamal, Firat University, Elazig, Turkey

    Department of Mathematics

References

T. Aktürk, Y. Gürefe, and H. Bulut, “New function method to the (n+1)-dimensional nonlinear problems,” An Int. J. Optim. Control Theor. Appl., 2017. https://doi.org/10.11121/ijocta.01.2017.00489 DOI: https://doi.org/10.11121/ijocta.01.2017.00489

O. A. Ilhan, A. Esen, H. Bulut, and H. M. Baskonus, “Singular solitons in the pseudo-parabolic model arising in nonlinear surface waves,” Results Phys., 2019. https://doi.org/10.1016/j.rinp.2019.01.059 DOI: https://doi.org/10.1016/j.rinp.2019.01.059

S. Arshed et al., “Optical solitons pertutabation with FokasLenells equation by exp(−ϕ(ξ))-expansion method,” Optik (Stuttg)., 2019. https://doi.org/10.1016/j.ijleo.2018.10.136 DOI: https://doi.org/10.1016/j.ijleo.2018.10.136

A. Biswas, M. Ekici, A. Sonmezoglu, and R. T. Alqahtani, “Optical soliton perturbation with full nonlinearity for Fokas– Lenells equation,” Optik (Stuttg)., 2018. https://doi.org/10.1016/j.ijleo.2018.03.094 DOI: https://doi.org/10.1016/j.ijleo.2018.03.094

A. Biswas, M. Ekici, A. Sonmezoglu, and R. T. Alqahtani, “Optical solitons with differential group delay for coupled Fokas–Lenells equation by extended trial function scheme,” Optik (Stuttg)., 2018. https://doi.org/10.1016/j.ijleo.2018.03.102 DOI: https://doi.org/10.1016/j.ijleo.2018.03.102

L. Ling, B. F. Feng, and Z. Zhu, “General soliton solutions to a coupled Fokas–Lenells equation,” Nonlinear Anal. Real World Appl., 2018. https://doi.org/10.1016/j.nonrwa.2017.08.013 DOI: https://doi.org/10.1016/j.nonrwa.2017.08.013

H. Triki and A. M. Wazwaz, “Combined optical solitary waves of the Fokas—Lenells equation,” Waves in Random and Complex Media, 2017. https://doi.org/10.1080/17455030.2017.1285449 DOI: https://doi.org/10.1080/17455030.2017.1285449

Y. Zhang, J. W. Yang, K. W. Chow, and C. F. Wu, “Solitons, breathers and rogue waves for the coupled Fokas–Lenells system via Darboux transformation,” Nonlinear Anal. Real World Appl., 2017. https://doi.org/10.1016/j.nonrwa.2016.06.006 DOI: https://doi.org/10.1016/j.nonrwa.2016.06.006

A. Biswas et al., “Optical soliton perturbation with Fokas– Lenells equation using three exotic and efficient integration schemes,” Optik (Stuttg)., 2018. https://doi.org/10.1016/j.ijleo.2018.03.132 DOI: https://doi.org/10.1016/j.ijleo.2018.03.132

E. V. Krishnan, A. Biswas, Q. Zhou, and M. Alfiras, “Optical soliton perturbation with Fokas–Lenells equation by mapping methods,” Optik (Stuttg)., 2019. https://doi.org/10.1016/j.ijleo.2018.10.017 DOI: https://doi.org/10.1016/j.ijleo.2018.10.017

H. S. Shukla, M. Tamsir, and V. K. Srivastava, “Numerical simulation of two dimensional sine-Gordon solitons using modified cubic B-spline differential quadrature method,” AIP Adv., 2015. https://doi.org/10.1063/1.4906256 DOI: https://doi.org/10.1063/1.4906256

G. Yel, H. M. Baskonus, and H. Bulut, “Novel archetypes of new coupled Konno–Oono equation by using sine–Gordon expansion method,” Opt. Quantum Electron., 2017. https://doi.org/10.1007/s11082-017-1127-z DOI: https://doi.org/10.1007/s11082-017-1127-z

H. M. Baskonus and H. Bulut, “New complex exact travelling wave solutions for the generalized-Zakharov equation with complex structures,” An Int. J. Optim. Control Theor. Appl., 2016. https://doi.org/10.11121/ijocta.01.2016.00295 DOI: https://doi.org/10.11121/ijocta.01.2016.00295

H. Triki and A. M. Wazwaz, “New types of chirped soliton solutions for the Fokas-Lenells equation,” in International Journal of Numerical Methods for Heat and Fluid Flow, 2017. https://doi.org/10.1016/j.cnsns.2016.06.026 DOI: https://doi.org/10.1016/j.cnsns.2016.06.026

J. He, S. Xu, and K. Porsezian, “Rogue waves of the fokaslenells equation,” J. Phys. Soc. Japan, 2012. https://doi.org/10.1143/JPSJ.81.124007 DOI: https://doi.org/10.1143/JPSJ.81.124007

Durur, H., Ilhan, E., & Bulut, H. (2020). Novel Complex Wave Solutions of the (2+ 1)- Dimensional Hyperbolic Nonlinear Schrödinger Equation. Fractal and Fractional, 4(3), 41. https://doi.org/10.3390/fractalfract4030041 DOI: https://doi.org/10.3390/fractalfract4030041

Yokus, A., Durur, H., Ahmad, H., & Yao, S. W. (2020). Construction of Different Types Analytic Solutions for the Zhiber-Shabat Equation. Mathematics, 8(6), 908. https://doi.org/10.3390/math8060908 DOI: https://doi.org/10.3390/math8060908

Durur, H. (2020). Different types analytic solutions of the (1+ 1)-dimensional resonant nonlinear Schrödinger’s equation using (G′/G)-expansion method. Modern Physics Letters B, 34(03), 2050036. https://doi.org/10.1142/S0217984920500360 DOI: https://doi.org/10.1142/S0217984920500360

Yokus, A., Durur, H., & Ahmad, H. (2020). Hyperbolic type solutions for the couple Boiti-Leon-Pempinelli system. FactaUniversitatis, Series: Mathematics and Informatics, 35(2), 523-531. DOI: https://doi.org/10.22190/FUMI2002523Y

Downloads

Published

2020-10-16

Issue

Section

Articles

How to Cite

Optical Soliton Solutions of Fokas-Lenells Equation via (m + 1/G’)- Expansion Method. (2020). Journal of Advances in Applied & Computational Mathematics, 7, 20-24. https://doi.org/10.15377/2409-5761.2020.07.3

Similar Articles

41-50 of 68

You may also start an advanced similarity search for this article.