Abstract
Titanium is a beneficial metallic material due to its excellent properties. However, the large-scale application of titanium is inhibited by the high production cost of the Kroll process. To address this challenge, researchers have proposed many new strategies based on electrochemical technology over the past decades. Those electrochemical methods show potential practical value to replace the Kroll process. Nevertheless, many of them are conducted in high-temperature melts, limiting the rapid development of those methods. Accordingly, room-temperature electrolysis in ionic liquid electrolytes was employed in titanium production. At present, there is no systematic and in-depth summary on room-temperature titanium electrolysis, although many pathways in room-temperature melts have been reported. In this review, we briefly outline the development of the titanium electrolysis methods firstly and summarize the room-temperature titanium electrolysis in ionic liquid electrolytes.
Furthermore, we have discussed the fundamental mechanisms and key challenges occurring in room-temperature titanium electrolysis. Finally, we proposed the opportunities and research direction on room-temperature titanium electrolysis. We hope this review will be a valuable roadmap for room-temperature titanium electrolysis.
References
Lütjering G, Williams JC. Titanium[M]. Springer Science & Business Media, 2007.
Wartman FS, Baker DH, Nettle JR, et al. Some observations on the Kroll process for titanium[J]. Journal of the Electrochemical Society, 1954; 101(10): 507. https://doi.org/10.1149/1.2781146
Sadoway DR. New opportunities for metals extraction and waste treatment by electrochemical processing in molten salts[J]. Journal of materials research, 1995; 10(3): 487-492. https://doi.org/10.1557/JMR.1995.0487
Chen GZ, Fray DJ, Farthing TW. Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride[J]. nature, 2000; 407(6802): 361-364. https://doi.org/10.1038/35030069
Suzuki N, Tanaka M, Noguchi H, et al. Reduction of TiS2 by OS process in CaCl2 melt[J]. ECS Transactions, 2016; 75(15): 507. https://doi.org/10.1149/07515.0507ecst
Wang Q, Song J, Wu J, et al. A new consumable anode material of titanium oxycarbonitride for the USTB titanium process[J]. Physical Chemistry Chemical Physics, 2014; 16(17): 8086-8091. https://doi.org/10.1039/c4cp00185k
Pal UB, Woolley DE, Kenney GB. Emerging SOM technology for the green synthesis of metals from oxides[J]. Jom, 2001; 53(10): 32-35. https://doi.org/10.1007/s11837-001-0053-4
Ginnata MV, Orsello G, Berruti R, et al. Industrial plant for the production of electrolytic titanium-Ginatta technology[M]//Production and Electrolysis of Light Metals. Pergamon, 1989; 201-208. https://doi.org/10.1016/B978-0-08-037295-2.50023-5
Marsh KN, Boxall J A, Lichtenthaler R. Room temperature ionic liquids and their mixtures-a review[J]. Fluid phase equilibria, 2004; 219(1): 93-98. https://doi.org/10.1016/j.fluid.2004.02.003
Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J]. Chemical reviews, 1999; 99(8): 2071-2084. https://doi.org/10.1021/cr980032t
Linga H, Stojek Z, Osteryoung RA. Electrochemistry of titanium (IV) in basic butylpyridinium chloride aluminum chloride in the presence of oxide[J]. Journal of the American Chemical Society, 1981; 103(13): 3754-3760. https://doi.org/10.1021/ja00403a023
Carlin RT, Osteryoung RA, Wilkes JS, et al. Studies of titanium (IV) chloride in a strongly Lewis acidic molten salt: electrochemistry and titanium NMR and electronic spectroscopy[J]. Inorganic Chemistry, 1990; 29(16): 3003-3009. https://doi.org/10.1021/ic00341a030
Tsuda T, Hussey CL, Stafford GR, et al. Electrochemistry of titanium and the electrodeposition of Al-Ti alloys in the Lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride melt[J]. Journal of the Electrochemical Society, 2003; 150(4): C234. https://doi.org/10.1149/1.1554915
Mukhopadhyay I, Freyland W. Electrodeposition of Ti nanowires on highly oriented pyrolytic graphite from an ionic liquid at room temperature[J]. Langmuir, 2003; 19(6): 1951-1953. https://doi.org/10.1021/la020891j
O'gardy WE, Cheeck GT. Low temperature refining and formation of refractory metals: U.S. Patent 6,958,115[P]. 2005-10-25.
O'grady WE, Cheek GT. Low temperature refining and formation of refractory metals: U.S. Patent 7,169,285[P]. 2007-1-30.
Mukhopadhyay I, Aravinda CL, Borissov D, et al. Electrodeposition of Ti from TiCl4 in the ionic liquid l-methyl-3-butyl-imidazolium bis (trifluoro methyl sulfone) imide at room temperature: study on phase formation by in situ electrochemical scanning tunneling microscopy[J]. Electrochimica Acta, 2005; 50(6): 1275-1281. https://doi.org/10.1016/j.electacta.2004.07.052
Katayama Y, Ogawa K, Miura T. Electrochemical reduction of titanium tetrabromide in a hydrophobic room-temperature molten salt[J]. Electrochemistry, 2005; 73(8): 576-578. https://doi.org/10.5796/electrochemistry.73.576
Andriyko Y, Nauer GE. Electrochemistry of TiCl4 in 1-butyl-2, 3-dimethyl imidazolium azide[J]. Electrochimica acta, 2007; 53(2): 957-962. https://doi.org/10.1016/j.electacta.2007.08.008
Aurbach D, Gofer Y, Chusid O, et al. On nonaqueous electrochemical behavior of titanium and Ti4+ compounds[J]. Electrochimica acta, 2007; 52(5): 2097-2101. https://doi.org/10.1016/j.electacta.2006.08.019
Ding J, Price WE, Ralph SF, et al. Electroless recovery of gold chloride using inherently conducting polymers[J]. Polymer international, 2004; 53(6): 681-687. https://doi.org/10.1002/pi.1395
Ding J, Wu J, MacFarlane D, et al. Induction of titanium reduction using pyrrole and polypyrrole in the ionic liquid ethyl-methyl-imidazolium bis (trifluoromethanesulphonyl) amide[J]. Electrochemistry communications, 2008; 10(2): 217-221. https://doi.org/10.1016/j.elecom.2007.11.021
Endres F, El Abedin SZ, Saad AY, et al. On the electrodeposition of titanium in ionic liquids[J]. Physical Chemistry Chemical Physics, 2008; 10(16): 2189-2199. https://doi.org/10.1039/b800353j
Pradhan D, Reddy RG. Electrochemical production of Ti-Al alloys using TiCl4-AlCl3-1-butyl-3-methyl imidazolium chloride (BMImCl) electrolytes[J]. Electrochimica Acta, 2009; 54(6): 1874-1880. https://doi.org/10.1016/j.electacta.2008.10.022
Fournier C, Favier F. Zn, Ti and Si nanowires by electrodeposition in ionic liquid[J]. Electrochemistry communications, 2011; 13(11): 1252-1255. https://doi.org/10.1016/j.elecom.2011.08.031
Lahiri A, Das R. Spectroscopic studies of the ionic liquid during the electrodeposition of Al-Ti alloy in 1-ethyl-3-methylimidazolium chloride melt[J]. Materials Chemistry and Physics, 2012; 132(1): 34-38. https://doi.org/10.1016/j.matchemphys.2011.10.048
Qi C, Wang Q, Kang Y, et al. Electrodeposition of titanium from an ionic liquid[C]//2016-Sustainable Industrial Processing Summit. Flogen Star Outreach, 2016; 9: 189-196.
Zhang XY, Hua YX, Xu CY, et al. Direct electrochemical reduction of titanium dioxide in Lewis basic AlCl3-1-butyl-3-methylimidizolium ionic liquid[J]. Electrochimica acta, 2011; 56(24): 8530-8533. https://doi.org/10.1016/j.electacta.2011.07.037
Xu C, Wu Q, Hua Y, et al. The electrodeposition of Zn-Ti alloys from ZnCl2-urea deep eutectic solvent[J]. Journal of Solid State Electrochemistry, 2014; 18(8): 2149-2155. https://doi.org/10.1007/s10008-014-2468-1
Xu C, Hua Y, Zhang Q, et al. Electrodeposition of Al-Ti alloy on mild steel from AlCl3-BMIC ionic liquid[J]. Journal of Solid State Electrochemistry, 2017; 21(5): 1349-1356. https://doi.org/10.1007/s10008-016-3498-7
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2021 Handong Jiao