Experimental Evaluation and Development of Artificial Neural Network Model for the Solar Stills Augmented with the Permanent Magnet and Sandbag
DOI:
https://doi.org/10.15377/2409-5826.2022.09.2Keywords:
ANN, Solar Still, Desalination, LM algorithm, Permanent magnetsAbstract
The availability of potable water is reducing day by day due to rapid growth in the human population and un-planned industrialization around the globe. Although human beings cannot think of survival in the absence of water, the global leadership can still not implement their pacts in reality. Solar still is one of the prominent ways of getting potable water from contaminated water. This manuscript reports the experimental evaluation and developed ANN model for the single basin solar stills having augmentations with the sand-filled cotton bags and ferrite ring permanent magnets. Root mean square error (RMSE), efficiency coefficient (E), the overall index of model performance (OI), and coefficient of residual mass (CRM) values are in good agreement with the proposed developed model of ANN. The proposed ANN model can be utilized to predict distillate yield with a variation of 5% for the reported modified stills. Overall correlation coefficient of CSS, MSS-1&2 are 0.98171, 0.9867, and 0.99542, respectively.
Downloads
References
Ayoub GM, Malaeb L. Developments in solar still desalination systems: A critical review. Crit Rev Environ Sci Technol., 2012; 42(19): pp. 2078-2112. https://doi.org/10.1080/10643389.2011.574104 DOI: https://doi.org/10.1080/10643389.2011.574104
2] Dumka P, Mishra DR. Influence of salt concentration on the performance characteristics of passive solar still. Int J Ambient Energy, 2019. https://doi.org/10.1080/01430750.2019.1611638 DOI: https://doi.org/10.1080/01430750.2019.1611638
Xiao G, et al. A review on solar stills for brine desalination. Appl Energy, 2013; 103: pp. 642-652. https://doi.org/10.1016/j.apenergy.2012.10.029 DOI: https://doi.org/10.1016/j.apenergy.2012.10.029
Muftah AF, Alghoul MA, Fudholi A, Abdul-Majeed MM, Sopian K. Factors affecting basin type solar still productivity: A detailed review. Renew Sustain Energy Rev, 2014; 32: pp. 430-447. https://doi.org/10.1016/j.rser.2013.12.052 DOI: https://doi.org/10.1016/j.rser.2013.12.052
Panchal HN, Patel S. An extensive review on different design and climatic parameters to increase distillate output of solar still. Renew Sustain Energy Rev, 2017; 69(December 2015): pp. 750-758, Mar. https://doi.org/10.1016/j.rser.2016.09.001 DOI: https://doi.org/10.1016/j.rser.2016.09.001
Kabeel AE, Manokar AM, Sathyamurthy R, Winston DP, El-Agouz SA, Chamkha AJ. A Review on Different Design Modifications Employed in Inclined Solar Still for Enhancing the Productivity. J Sol Energy Eng, 2018; 141(3): p. 031007. https://doi.org/10.1115/1.4041547 DOI: https://doi.org/10.1115/1.4041547
Dumka P, Mishra DR. Energy and exergy analysis of conventional and modified solar still integrated with sand bed earth: Study of heat and mass transfer. Desalination, 2018; 437(July 2018): pp. 15-25. https://doi.org/10.1016/j.desal.2018.02.026 DOI: https://doi.org/10.1016/j.desal.2018.02.026
Dumka P, Mishra DR. Experimental investigation of modified single slope solar still integrated with earth (I) &(II):Energy and exergy analysis. Energy, 2018; 160: pp. 1144-1157, Oct. https://doi.org/10.1016/j.energy.2018.07.083 DOI: https://doi.org/10.1016/j.energy.2018.07.083
9] Kabeel AE, Taamneh Y, Sathyamurthy R, Kumar PN, Manokar AM, Arunkumar T. Experimental study on conventional solar still integrated with inclined solar still under different water depth. Heat Transf - Asian Res, 2019; 48(1): pp. 100-114. https://doi.org/10.1002/htj.21370 DOI: https://doi.org/10.1002/htj.21370
Zanganeh P, et al. Productivity enhancement of solar stills by nano-coating of condensing surface. Desalination, 2019; 454(December 2018): pp. 1-9. https://doi.org/10.1016/j.desal.2018.12.007 DOI: https://doi.org/10.1016/j.desal.2018.12.007
Das D, Bordoloi U, Kalita P, Boehm RF, Kamble AD. Solar still distillate enhancement techniques and recent developments. Groundw Sustain Dev, 2020; 10(March): p. 100360. https://doi.org/10.1016/j.gsd.2020.100360 DOI: https://doi.org/10.1016/j.gsd.2020.100360
Mevada D, et al. Effect of fin configuration parameters on performance of solar still: A review. Groundw Sustain Dev, 2020; 10(September 2019): p. 100289. https://doi.org/10.1016/j.gsd.2019.100289 DOI: https://doi.org/10.1016/j.gsd.2019.100289
Saleh B, et al. Investigating the performance of dish solar distiller with phase change material mixed with Al2O3 nanoparticles under different water depths. Environ Sci Pollut Res, 2022. https://doi.org/10.1007/s11356-021-18295-4 DOI: https://doi.org/10.1007/s11356-021-18295-4
Dumka P, Gautam H, Sharma S, Gunawat C, Mishra DR. Impact of Sand Filled Glass Bottles on Performance of Conventional Solar Still. J Basic Appl Sci, 2022; 18: pp. 8-15. https://doi.org/10.29169/1927-5129.2022.18.02 DOI: https://doi.org/10.29169/1927-5129.2022.18.02
Dumka P, Sharma S, Gautam H, Gunawat C. Impact of Solar Powered Fountain on The Performance of Conventional Solar Still. Int J Eng Res Technol, 2021; 10(11): pp. 109-112.
Mahmood F, Al-Ansari T. Design and analysis of a renewable energy driven greenhouse integrated with a solar still for arid climates. Energy Convers Manag, 2022; 258: p. 115512. https://doi.org/10.1016/j.enconman.2022.115512 DOI: https://doi.org/10.1016/j.enconman.2022.115512
Dunkle RV. Solar water distillation: the roof type still and a multiple effect diffusion still. in International Developments in Heat Transfer, ASME, Proc International Heat Transfer, Part V, University of Colorado, 1961, pp. 895-902.
Clark JA. The steady-state performance of a solar still. Sol Energy, 1990; 44(1): pp. 43-49. https://doi.org/10.1016/0038-092X(90)90025-8 DOI: https://doi.org/10.1016/0038-092X(90)90025-8
Kiatsiriroat T, Bhattacharya SC, Wibulswas P. Prediction of mass transfer rates in solar stills. Energy, 1986; 11(9): pp. 881-886, Sep. https://doi.org/10.1016/0360-5442(86)90007-1 DOI: https://doi.org/10.1016/0360-5442(86)90007-1
Tsilingiris PT. Combined heat and mass transfer analyses in solar distillation systems - The restrictive conditions and a validity range investigation. Sol Energy, 2012; 86(11): pp. 3288-3300. https://doi.org/10.1016/j.solener.2012.08.009 DOI: https://doi.org/10.1016/j.solener.2012.08.009
Tsilingiris PT. Parameters affecting the accuracy of Dunkle ' s model of mass transfer phenomenon at elevated temperatures. Appl Therm Eng, 2015; 75: pp. 203-212. https://doi.org/10.1016/j.applthermaleng.2014.09.010 DOI: https://doi.org/10.1016/j.applthermaleng.2014.09.010
Dumka P, Chauhan R, Mishra DR. Experimental and theoretical evaluation of a conventional solar still augmented with jute covered plastic balls. J Energy Storage, 2020; 32(June): p. 101874. https://doi.org/10.1016/j.est.2020.101874 DOI: https://doi.org/10.1016/j.est.2020.101874
Kalogirou SA, Mathioulakis E, Belessiotis V. Arti fi cial neural networks for the performance prediction of large solar systems. Renew Energy, 2014; 63: pp. 90-97. https://doi.org/10.1016/j.renene.2013.08.049 DOI: https://doi.org/10.1016/j.renene.2013.08.049
Essa FA, Abd Elaziz M, Elsheikh AH. An enhanced productivity prediction model of active solar still using artificial neural network and Harris Hawks optimizer. Appl Therm Eng, 2020; 170(August 2019): p. 115020. https://doi.org/10.1016/j.applthermaleng.2020.115020 DOI: https://doi.org/10.1016/j.applthermaleng.2020.115020
Kalogirou SA, Panteliou S, Dentsoras A. Artificial neural networks in renewable energy systems applications: a review. Renew Sustain Energy Rev, 2001; 5(4): pp. 373-401. https://doi.org/10.1016/S1364-0321(01)00006-5 DOI: https://doi.org/10.1016/S1364-0321(01)00006-5
Nazari S, Bahiraei M, Moayedi H, Safarzadeh H. A proper model to predict energy efficiency, exergy efficiency, and water productivity of a solar still via optimized neural network. J Clean Prod, 2020; 277: p. 123232. https://doi.org/10.1016/j.jclepro.2020.123232 DOI: https://doi.org/10.1016/j.jclepro.2020.123232
Sohani A, Hoseinzadeh S, Samiezadeh S, Verhaert I. Machine learning prediction approach for dynamic performance modeling of an enhanced solar still desalination system. J Therm Anal Calorim, 2022; 147(5): pp. 3919-3930. https://doi.org/10.1007/s10973-021-10744-z DOI: https://doi.org/10.1007/s10973-021-10744-z
Santos NI, Said AM, James DE, Venkatesh NH. Modeling solar still production using local weather data and artificial neural networks. Renew Energy, 2012; 40(1): pp. 71-79. https://doi.org/10.1016/j.renene.2011.09.018 DOI: https://doi.org/10.1016/j.renene.2011.09.018
Chauhan R, Dumka P, Mishra DR. Modelling conventional and solar earth still by using the LM algorithm-based artificial neural network. Int J Ambient Energy, 2020; pp. 1-8. https://doi.org/10.1080/01430750.2019.1707113 DOI: https://doi.org/10.1080/01430750.2019.1707113
Mashaly AF, Alazba AA. Comparative investigation of artificial neural network learning algorithms for modeling solar still production. J Water Reuse Desalin, 2015; 5(4): pp. 480-493. https://doi.org/10.2166/wrd.2015.009 DOI: https://doi.org/10.2166/wrd.2015.009
Mashaly AF, Alazba AA. Comparison of ANN, MVR, and SWR models for computing thermal efficiency of a solar still. Int J Green Energy, 2016; 13(10): pp. 1016-1025. https://doi.org/10.1080/15435075.2016.1206000 DOI: https://doi.org/10.1080/15435075.2016.1206000
Mashaly AF, Alazba AA. Thermal performance analysis of an inclined passive solar still using agricultural drainage water and artificial neural network in arid climate. Sol Energy, 2017; 153: pp. 383-395. https://doi.org/10.1016/j.solener.2017.05.083 DOI: https://doi.org/10.1016/j.solener.2017.05.083
Hidouri K, Mishra DR, Benhmidene A, Chouachi B. Experimental and theoretical evaluation of a hybrid solar still integrated with an air compressor using ANN. Desalin Water Treat, 2017; 88(June 2018): pp. 52-59. https://doi.org/10.5004/dwt.2017.21333 DOI: https://doi.org/10.5004/dwt.2017.21333
Chauhan R, Sharma S, Pachauri R, Dumka P, Mishra DR. Experimental and theoretical evaluation of thermophysical properties for moist air within solar still by using different algorithms of artificial neural network. J Energy Storage, 2020; 30(February): p. 101408. https://doi.org/10.1016/j.est.2020.101408 DOI: https://doi.org/10.1016/j.est.2020.101408
Dumka P, Kushwah Y, Sharma A, Mishra DR. Comparative analysis and experimental evaluation of single slope solar still augmented with permanent magnets and conventional solar still. Desalination, 2019; 459. https://doi.org/10.1016/j.desal.2019.02.012 DOI: https://doi.org/10.1016/j.desal.2019.02.012
Dumka P, Sharma A, Kushwah Y, Raghav AS, Mishra DR. Performance evaluation of single slope solar still augmented with sand-filled cotton bags. J Energy Storage, 2019; 25: p. 100888, Oct. https://doi.org/10.1016/j.est.2019.100888 DOI: https://doi.org/10.1016/j.est.2019.100888
Dumka P, Mishra DR. Performance evaluation of single slope solar still augmented with the ultrasonic fogger. Energy, 2020; 190: p. 116398, Oct. https://doi.org/10.1016/j.energy.2019.116398 DOI: https://doi.org/10.1016/j.energy.2019.116398
Essa FA, Abdullah AS, Omara ZM, Kabeel AE, Gamiel Y. Experimental study on the performance of trays solar still with cracks and reflectors. Appl Therm Eng, 2021; 188: p. 116652. https://doi.org/10.1016/j.applthermaleng.2021.116652 DOI: https://doi.org/10.1016/j.applthermaleng.2021.116652
Tang S, Yang Y. Why neural networks apply to scientific computing?. Theor Appl Mech Lett, 2021; 11(3): p. 100242. https://doi.org/10.1016/j.taml.2021.100242 DOI: https://doi.org/10.1016/j.taml.2021.100242
Katal A, Singh N. Artificial Neural Network: Models, Applications, and Challenges. in Innovative Trends in Computational Intelligence, R. Tomar, M. D. Hina, R. Zitouni, and A. Ramdane-Cherif, Eds. Cham: Springer International Publishing, 2022; pp. 235-257. https://doi.org/10.1007/978-3-030-78284-9_11 DOI: https://doi.org/10.1007/978-3-030-78284-9_11
Jawad J, Hawari AH, Zaidi SJ. Artificial neural network modeling of wastewater treatment and desalination using membrane processes: A review. Chem Eng J, 2021; 419: p. 129540. https://doi.org/10.1016/j.cej.2021.129540 DOI: https://doi.org/10.1016/j.cej.2021.129540
Dombi J, Jónás T. The generalized sigmoid function and its connection with logical operators. Int J Approx Reason, 2022; 143: pp. 121-138. https://doi.org/10.1016/j.ijar.2022.01.006 DOI: https://doi.org/10.1016/j.ijar.2022.01.006
Bilski J, Kowalczyk B, Marchlewska A, Zurada JM. Local Levenberg-Marquardt Algorithm for Learning Feedforwad Neural Networks. J Artif Intell Soft Comput Res, 2020; 10(4): pp. 299-316. https://doi.org/10.2478/jaiscr-2020-0020 DOI: https://doi.org/10.2478/jaiscr-2020-0020
Zare H, Hajarian M. An efficient Gauss-Newton algorithm for solving regularized total least squares problems. Numer Algorithms, 2022; 89(3): pp. 1049-1073. https://doi.org/10.1007/s11075-021-01145-2 DOI: https://doi.org/10.1007/s11075-021-01145-2
Ozyildirim BM, Kiran M. Levenberg-Marquardt multi-classification using hinge loss function. Neural Networks, 2021; 143: pp. 564-571. https://doi.org/10.1016/j.neunet.2021.07.010 DOI: https://doi.org/10.1016/j.neunet.2021.07.010
Hagan MT, Demuth HB, Beale MH. Neural Network Design, 2nd ed. CENGAGE Learning, 1995.
Meng H, Yuan F, Yan T, Zeng M. Indoor Positioning of RBF Neural Network Based on Improved Fast Clustering Algorithm Combined with LM Algorithm. IEEE Access, 2019; 7: pp. 5932-5945. https://doi.org/10.1109/ACCESS.2018.2888616 DOI: https://doi.org/10.1109/ACCESS.2018.2888616
Gao J, Zhang Y, Du Y, Li Q. Optimization of the tire ice traction using combined Levenberg-Marquardt (LM) algorithm and neural network. J Brazilian Soc Mech Sci Eng, 2019; 41(1): p. 40. https://doi.org/10.1007/s40430-018-1545-2 DOI: https://doi.org/10.1007/s40430-018-1545-2
Arbat G, Puig-Bargués J, Barragán J, Bonany J, de Cartagena FR. Monitoring soil water status for micro-irrigation management versus modelling approach. Biosyst Eng, 2008; 100(2): pp. 286-296. https://doi.org/10.1016/j.biosystemseng.2008.02.008 DOI: https://doi.org/10.1016/j.biosystemseng.2008.02.008
Alazba AA, Mattar MA, ElNesr MN, Amin MT. Field assessment of friction head loss and friction correction factor equations. J Irrig Drain Eng, 2011; 138(2): pp. 166-176. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000387 DOI: https://doi.org/10.1061/(ASCE)IR.1943-4774.0000387
Jalal FE, Xu Y, Iqbal M, Javed MF, Jamhiri B. Predictive modeling of swell-strength of expansive soils using artificial intelligence approaches: ANN, ANFIS and GEP. J Environ Manage, 2021; 289: p. 112420. https://doi.org/10.1016/j.jenvman.2021.112420 DOI: https://doi.org/10.1016/j.jenvman.2021.112420
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Rishika Chauhan, Pankaj Dumka, Dhananjay R. Mishra

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All the published articles are licensed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.


