Abstract
We develop a direct numerical simulation (DNS) model of multidisciplinary transport coupled with electrochemical reactions during Li-ion battery charge/discharge processes based on the finite volume (FV) numerical technique. Different from macroscopic models, the DNS model is based on microstructure of composite electrodes and solves component-wise transport equations. During DNS, the input physical properties are intrinsic material properties, not effective physical properties for macroscopic models. Since the interface of solid and electrolyte phase is evidently differentiated in DNS, the occurrence of electrochemical reactions is prescribed exactly on the interface of solid and electrolyte phase. Therefore, the DNS model has the potential to unravel the underlying mesoscopic pore-scale mechanisms of multi-disciplinary transport coupled with electrochemical reactions and thus can provide insightful information of the involved processes, as well as enables the design and optimization of electrodes, including microstructures inside electrodes. One test case, in which the electrode microstructure is reconstructed with a purely random reconstruction method, is considered. Simulation results corroborate the validity of the DNS model.
References
Scrosati B, Garche J. Lithium batteries: status. prospects and future. J Power Sources 2010; 195: 419-2430. http://dx.doi.org/10.1016/j.jpowsour.2009.11.048
Bandhauer TM, Garimella S, Fuller TF. A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc 2011; 158: R1-R25. http://dx.doi.org/10.1149/1.3515880
West K, Jacobsen T, Atlung S. Modeling of porous insertion electrodes with liquid electrolyte. J Electrochem Soc 1982; 129: 1480-1485. http://dx.doi.org/10.1149/1.2124188
Doyle M, Fuller TF, Newman J. Modeling of galvanostatic charge and discharge of lithium/ polymer/insertion cell. J Electrochem Soc 1993; 140: 1526-1533. http://dx.doi.org/10.1149/1.2221597
Pals CR, Newman J. Thermal modeling of the lithium/polymer battery I. Discharge behavior of a single cell. J Electrochem Soc 1995; 142: 3274-3281. http://dx.doi.org/10.1149/1.2049974
Pals CR, Newman J. Thermal modeling of the lithium/polymer battery II. Temperature profiles in a cell stack. J Electrochem Soc 1995; 142: 3282-3288. http://dx.doi.org/10.1149/1.2049975
Chen Y, Evans JW. Heat transfer phenomena in lithium/ polymer-electrolyte batteries for electric vehicle application. J Electrochem Soc 1993; 140: 1833-1838. http://dx.doi.org/10.1149/1.2220724
Chen Y, Evans JW. Three-dimensional thermal modeling of lithium-polymer batteries under galvanostatic discharge and dynamic power profile. J Electrochem Soc 1994; 141: 2947- 2955. http://dx.doi.org/10.1149/1.2059263
Gu WB, Wang CY. Thermal-electrochemical modeling of battery systems. J Electrochem Soc 2000; 147: 2910-2922. http://dx.doi.org/10.1149/1.1393625
Srinivasan V, Wang CY. Analysis of electrochemical and thermal behavior of lithium-ion cells. J Electrochem Soc 2003; 150: A98-A106. http://dx.doi.org/10.1149/1.1526512
Jiang FM, Peng P, Sun YQ. Thermal analyses of LiFePO4/graphite battery discharge processes. J Power Sources 2013; 243: 181-194. http://dx.doi.org/10.1016/j.jpowsour.2013.05.089
Jiang FM, Zeng JB, Wu W. Design and optimization of lithium-ion battery electrodes: mesoscopic pore-scale numerical model. Advanced Materials Industry 2011; 12: 2-6. (in Chinese)
Orszag SA. Analytical theories of turbulence. J Fluid Mechanics 1970; 41: 363-386. http://dx.doi.org/10.1017/S0022112070000642
Baritaud T, Poinsot T, Baum M. Direct numerical simulation for turbulent reacting flows. Paris, Editions Technip 1996.
Wang GQ, Mukherjee PP, Wang CY. Direct numerical simulation (DNS) modeling of PEFC electrodes Part I. Regular microstructure. Electrochim Acta 2006; 51: 3139- 3150. http://dx.doi.org/10.1016/j.electacta.2005.09.002
Wang GQ, Mukherjee PP, Wang CY. Direct numerical simulation (DNS) modeling of PEFC electrodes Part II. Random microstructure. Electrochimica Acta 2006; 51: 3151- 3160. http://dx.doi.org/10.1016/j.electacta.2005.09.003
Mukherjee PP, Wang CY. Stochastic microstructure reconstruction and direct numerical simulation of the PEFC catalyst layer. J Electrochem Soc 2006; 153: A840-A849. http://dx.doi.org/10.1149/1.2179303
Mukherjee PP, Wang CY. Direct numerical simulation modeling of bilayer cathode catalyst layers in polymer electrolyte fuel cells. J Electrochem Soc 2007; 154: B1121- B1131. http://dx.doi.org/10.1149/1.2776221
Zhang X, Sastry AM, Shyy W. Intercalation-induced stress and heat generation within single lithium-ion battery cathode particles. J Electrochem Soc 2008; 155: A542-A552. http://dx.doi.org/10.1149/1.2926617
Wang CW, Sastry AM. Mesoscale modeling of a Li-ion polymer cell. J Electrochem Soc 2007; 154: A1035-A1047.
Garcia RE, Chiang YM, Carter WC, Limthongkul P, Bishop CM. Microstructural modeling and design of rechargeable lithium-ion batteries. J Electrochem Soc 2005; 152: A255- A263.
Garcia RE, Chiang YM. Spatially resolved modeling of microstructurally complex battery architectures. J Electrochem Soc 2007; 154: A856-864.
Smith M, Garcia RE, Horn QC. The effect of microstructure on the galvanostatic discharge of graphite anode electrodes in LiCoO2-based rocking-chair rechargeable batteries. J Electrochem Soc 2009; 156: A896-A904.
Awarke A, Wittler M, Pischinger S, Bockstette J. A 3D mesoscale model of the collector-electrode interface in Li-Ion batteries. J Electrochem Soc 2012; 159: A798-A808.
Ramadass P, Haran B, Gomadam PM, White R, Popov BN. Development of first principles capacity fade model for Li-ion cells. J Electrochem Soc 2004; 151: A196-A203.
Kuzminskii YV, Nyrkova L, Andriiko AA. Heat generation of electrochemical systems batteries. J Power Sources 1993; 46: 29-38. http://dx.doi.org/10.1016/0378-7753(93)80032-K
Zeng JB, Jiang FM, Chen Z. A pore-scale smoothed particle hydrodynamics model for lithium-ion batteries. Chin Sci Bull 2014; 59: 2793-2810. http://dx.doi.org/10.1007/s11434-014-0354-y
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.