Flow and Heat Transfer Performance of Liquid Metal in Mini-Channel and Verification of Geometric Parameter Optimization
Abstract - 228
PDF

Keywords

Liquid metal
Mini-channel
Flow and heat transfer
Parameter optimization

How to Cite

1.
Xiang L, Yang S, Wang Q, Wu J. Flow and Heat Transfer Performance of Liquid Metal in Mini-Channel and Verification of Geometric Parameter Optimization. J. Adv. Therm. Sci. Res. [Internet]. 2023 Dec. 20 [cited 2024 Oct. 14];10:23-40. Available from: https://avantipublishers.com/index.php/jatsr/article/view/1447

Abstract

With the rapid development of the electronics industry, the power of devices continues to rise, and seeking more efficient cooling technologies has become a key challenge in various applied scenarios. This study contributes to a novel and efficient heat dissipation method for chips employing liquid metal as a coolant. In this paper, the flow and heat transfer performance of a novel liquid metal (Ga61In25Sn13Zn1) in a mini-channel heat sink is conducted. Using pressure difference, pump power, and total thermal resistance as object parameters, a comprehensive optimization about Hp (channel height), Wc (channel width), Ww (wall thickness), and tb (base thickness) is presented. The optimized parameter combination is Hp = 7 mm, Wc = 0.6 mm, Ww = 0.4 mm, and tb = 0.2 mm. Furthermore, all of the optimization parameters are verified through the design method of orthogonal experiments.

https://doi.org/10.15377/2409-5826.2023.10.3
PDF

References

Huynh PH, Zin Htoo K, Kariya K, Miyara A. Experimental investigation thermal performance of loop heat Pipe operating with different working fluids. J Adv Therm Sci Res. 2019; 6: 19-30. https://doi.org/10.15377/2409-5826.2019.06.3

Li R, Wang Z, Wu Z, Ni J, He L, Xiong M, et al. Enhanced cooling performance of stacked chips by structural modification for fractal micro-protrusions. Appl Therm Eng. 2023; 236: 121416. https://doi.org/10.1016/j.applthermaleng.2023.121416

Liu GL, Liu J. Convective cooling of compact electronic devices via liquid metals with low melting points. J Heat Transfer. 2021; 143: 050404. https://doi.org/10.1115/1.4050404

Datta M, Choi H-W. Microheat exchanger for cooling high power laser diodes. Appl Therm Eng. 2015; 90: 266-73. https://doi.org/10.1016/j.applthermaleng.2015.07.012

Baraty Beni S, Bahrami A, Salimpour MR. Design of novel geometries for microchannel heat sinks used for cooling diode lasers. Int J Heat Mass Transf. 2017; 112: 689-98. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.043

Xiang L, Cheng Y, Yu X, Fan Y, Yang X, Zhang X, et al. High-performance thermal management system for high-power LEDs based on double-nozzle spray cooling. Appl Therm Eng. 2023; 231: 121005. https://doi.org/10.1016/j.applthermaleng.2023.121005

Wang R, Liang Z, Souri M, Esfahani MN, Jabbari M. Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method. Int J Heat Mass Transf. 2022; 183: 122095. https://doi.org/10.1016/j.ijheatmasstransfer.2021.122095

Qian Z, Li Y, Rao Z. Thermal performance of lithium-ion battery thermal management system by using mini-channel cooling. Energy Convers Manag. 2016; 126: 622-31. https://doi.org/10.1016/j.enconman.2016.08.063

Kim K-S, Won M-H, Kim J-W, Back B-J. Heat pipe cooling technology for desktop PC CPU. Appl Therm Eng. 2003; 23: 1137-44. https://doi.org/10.1016/S1359-4311(03)00044-9

Deng Y, Liu J. Hybrid liquid metal–water cooling system for heat dissipation of high power density microdevices. Heat and Mass Transfer. 2010; 46: 1327-34. https://doi.org/10.1007/s00231-010-0658-7

Bahiraei M, Heshmatian S. Electronics cooling with nanofluids: A critical review. Energy Convers Manag. 2018; 172: 438-56. https://doi.org/10.1016/j.enconman.2018.07.047

Li J, Lv L, Zhou G, Li X. Mechanism of a microscale flat plate heat pipe with extremely high nominal thermal conductivity for cooling high-end smartphone chips. Energy Convers Manag. 2019; 201: 112202. https://doi.org/10.1016/j.enconman.2019.112202

Gupta R, Asgari S, Moazamigoodarzi H, Down DG, Puri IK. Energy, exergy and computing efficiency based data center workload and cooling management. Appl Energy. 2021; 299: 117050. https://doi.org/10.1016/j.apenergy.2021.117050

Yuan X, Zhou X, Pan Y, Kosonen R, Cai H, Gao Y, et al. Phase change cooling in data centers: A review. Energy Build. 2021; 236: 110764. https://doi.org/10.1016/j.enbuild.2021.110764

Li S, Zhang H, Cheng J, Li X, Cai W, Li Z, et al. A state-of-the-art overview on the developing trend of heat transfer enhancement by single-phase flow at micro scale. Int J Heat Mass Transf. 2019; 143: 118476. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118476

Bouchard A, Hodges T, Stephan M, Wu L, Koukoulas T, Green RG, et al. Thermal gradients integrated on-chip by passive radiative cooling of silicon nitride nanomechanical resonators. Appl Therm Eng. 2023; 229: 120561. https://doi.org/10.1016/j.applthermaleng.2023.120561

Peng J, Fang C, Shu Z, Gao D. Heat transfer modeling and development of on-chip active cooling and heating microfluidic. Cryobiology. 2017; 80: 190. https://doi.org/10.1016/j.cryobiol.2017.10.143

Peng Y-H, Wang D-H, Li X-Y, Zhang Y. Cooling chip on PCB by embedded active microchannel heat sink. Int J Heat Mass Transf. 2022; 196: 123251. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123251

Hua W, Zhang L, Zhang X. Research on passive cooling of electronic chips based on PCM: A review. J Mol Liq. 2021; 340: 117183. https://doi.org/10.1016/j.molliq.2021.117183

Liu Y, Zhang Z, Zhang N, Yuan Y, Phelan PE. Thermal buffering performance of passive phase change material micro-pillar array systems on temperature regulation of microfluidic chips. J Energy Storage. 2023; 58: 106424. https://doi.org/10. 1064241016/j.est.2022.

Whelan BP, Kempers R, Robinson AJ. A liquid-based system for CPU cooling implementing a jet array impingement waterblock and a tube array remote heat exchanger. Appl Therm Eng. 2012; 39: 86-94. https://doi.org/10.1016/j.applthermaleng.2012.01.013

Chernysheva MA, Yushakova SI, Maydanik YuF. Copper–water loop heat pipes for energy-efficient cooling systems of supercomputers. Energy. 2014; 69: 534-42. https://doi.org/10.1016/j.energy.2014.03.048

Faghri A. Heat pipes: review, opportunities and challenges. Frontiers in Heat Pipes. 2014; 5: 1-48. https://doi.org/10.5098/fhp.5.1

Agostini B, Fabbri M, Park JE, Wojtan L, Thome JR, Michel B. State of the art of high heat flux cooling technologies. Heat Transf Eng. 2007; 28: 258-81. https://doi.org/10.1080/01457630601117799

Tawk M, Avenas Y, Kedous-Lebouc A, Petit M. Numerical and experimental investigations of the thermal management of power electronics with liquid metal mini-channel coolers. IEEE Trans Ind Appl. 2013; 49: 1421-9. https://doi.org/10.1109/TIA.2013.2252132

Deng Y, Liu J. Design of practical liquid metal cooling device for heat dissipation of high performance CPUs. J Electron Packag. 2010; 132: 031009. https://doi.org/10.1115/1.4002012

Liu D, Zhao F-Y, Yang H-X, Tang G-F. Thermoelectric mini cooler coupled with micro thermosiphon for CPU cooling system. Energy. 2015; 83: 29-36. https://doi.org/10.1016/j.energy.2015.01.098

Zhang X-D, Yang X-H, Zhou Y-X, Rao W, Gao J-Y, Ding Y-J, et al. Experimental investigation of galinstan based minichannel cooling for high heat flux and large heat power thermal management. Energy Convers Manag. 2019; 185: 248-58. https://doi.org/10.1016/j.enconman.2019.02.010

Sung MK, Mudawar I. Single-phase and two-phase hybrid cooling schemes for high-heat-flux thermal management of defense electronics. 2008 11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, IEEE; 2008, p. 121-31. https://doi.org/10.1109/ITHERM.2008.4544262

Pati AR, Panda A, Lily, Munshi B, Kumar A, Sahoo A, et al. Dropwise evaporative cooling of hot water: A novel methodology to enhance heat transfer rate at very high surface temperatures. Int J Therm Sci. 2018; 127: 335-50. https://doi.org/10.1016/j.ijthermalsci.2018.01.028

Nguyen CT, Roy G, Gauthier C, Galanis N. Heat transfer enhancement using Al2O3–water nanofluid for an electronic liquid cooling system. Appl Therm Eng. 2007; 27: 1501-6. https://doi.org/10.1016/j.applthermaleng.2006.09.028

Youssef R, Kalogiannis T, Behi H, Pirooz A, Van Mierlo J, Berecibar M. A comprehensive review of novel cooling techniques and heat transfer coolant mediums investigated for battery thermal management systems in electric vehicles. Energy Rep. 2023; 10: 1041-68. https://doi.org/10.1016/j.egyr.2023.07.041

Tuckerman DB, Pease RFW. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981; 2: 126-9. https://doi.org/10.1109/EDL.1981.25367

Lee D-Y, Vafai K. Comparative analysis of jet impingement and microchannel cooling for high heat flux applications. Int J Heat Mass Transf. 1999; 42: 1555-68. https://doi.org/10.1016/S0017-9310(98)00265-8

Xie XL, Tao WQ, He YL. Numerical study of turbulent heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink. J Electron Packag. 2007; 129: 247-55. https://doi.org/10.1115/1.2753887

Qu W, Mudawar I. Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int J Heat Mass Transf. 2002; 45: 2549-65. https://doi.org/10.1016/S0017-9310(01)00337-4

Wang H, Chen Z, Gao J. Influence of geometric parameters on flow and heat transfer performance of micro-channel heat sinks. Appl Therm Eng. 2016; 107: 870-9. https://doi.org/10.1016/j.applthermaleng.2016.07.039

Yang X-H, Tan S-C, Ding Y-J, Liu J. Flow and thermal modeling and optimization of micro/mini-channel heat sink. Appl Therm Eng. 2017; 117: 289-96. https://doi.org/10.1016/j.applthermaleng.2016.12.089

Miner A, Ghoshal U. Cooling of high-power-density microdevices using liquid metal coolants. Appl Phys Lett. 2004; 85: 506-8. https://doi.org/10.1063/1.1772862

Bo G, Ren L, Xu X, Du Y, Dou S. Recent progress on liquid metals and their applications. Adv Phys X. 2018; 3: 1446359. https://doi.org/10.1080/23746149.2018.1446359

Liu J, Deng Y-G, Deng Z-S. Recent advancement on liquid metal cooling for thermal management of computer chip. Vol. 4: Electronics and Photonics, ASMEDC; 2010, p. 161-6. https://doi.org/10.1115/IMECE2010-37640

Deng Y, Liu J. A liquid metal cooling system for the thermal management of high-power LEDs. Int Commun Heat Mass Transf. 2010; 37: 788-91. https://doi.org/10.1016/j.icheatmasstransfer.2010.04.011

Kim H, Chang S, Song Y. Flexible liquid metal display using 3-Aminopropyl triethoxysilane-treated light emitting diodes (LEDs) array. Microelectron Eng. 2022; 253: 111677. https://doi.org/10.1016/j.mee.2021.111677

Vetrovec J. Quasi-passive heat sink for high-power laser diodes. In: Zediker MS, Ed. High-Power Diode Laser Technology and Applications VII, SPIE; 2009. https://doi.org/10.1117/12.808658

Xu J, Cheng K, Dang C, Wang Y, Liu Z, Qin J, et al. Performance comparison of liquid metal cooling system and regenerative cooling system in supersonic combustion ramjet engines. Energy. 2023; 275: 127488. https://doi.org/10.1016/j.energy.2023.127488

Cheng K, Xu J, Dang C, Qin J, Jing W. Performance evaluation of fuel indirect cooling based thermal management system using liquid metal for hydrocarbon-fueled scramjet. Energy. 2022; 260: 125068. https://doi.org/10.1016/j.energy.2022.125068

Liu J, Deng Y-G, Deng Z-S. Recent advancement on liquid metal cooling for thermal management of computer chip. Vol. 4: Electronics and Photonics, ASMEDC; 2010, p. 161-6. https://doi.org/10.1115/IMECE2010-37640

Ma KQ, Liu J, Xiang SH, Xie KW, Zhou YX. Study of thawing behavior of liquid metal used as computer chip coolant. Int J Therm Sci. 2009; 48: 964-74. https://doi.org/10.1016/j.ijthermalsci.2008.08.005

Nguyen Q-K, Ma J, Zhang P. Liquid metal-filled phase change composites with tunable stiffness: Computational modeling and experiment. Mech Mater. 2023; 183: 104702. https://doi.org/10.1016/j.mechmat.2023.104702

Yang X-H, Tan S-C, Liu J. Numerical investigation of the phase change process of low melting point metal. Int J Heat Mass Transf. 2016; 100: 899-907. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.109

Yang X-H, Tan S-C, Ding Y-J, Wang L, Liu J, Zhou Y-X. Experimental and numerical investigation of low melting point metal-based PCM heat sink with internal fins. Int Commun Heat Mass Transf. 2017; 87: 118-24. https://doi.org/10.1016/j.icheatmasstransfer.2017.07.001

Yang X-H, Tan S-C, He Z-Z, Zhou Y-X, Liu J. Evaluation and optimization of low melting point metal PCM heat sink against ultra-high thermal shock. Appl Therm Eng. 2017; 119: 34-41. https://doi.org/10.1016/j.applthermaleng.2017.03.050

Liu J, Zhou YX. A computer chip cooling method that uses low melting point metal and its alloys as the cooling fluid. 2002; China Patent 2131419.

Kalkan O. Multi-objective optimization of a liquid metal cooled heat sink for electronic cooling applications. Int J Therm Sci. 2023; 190: 108325. https://doi.org/10.1016/j.ijthermalsci.2023.108325

Sarowar MT. Numerical analysis of a liquid metal cooled mini channel heat sink with five different ceramic substrates. Ceram Int. 2021; 47: 214-25. https://doi.org/10.1016/j.ceramint.2020.08.124

Guo W, Prasser H-M. Direct numerical simulation of turbulent heat transfer in liquid metals in buoyancy-affected vertical channel. Int J Heat Mass Transf. 2022; 194: 123013. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123013

Zhang X-D, Yang X-H, Zhou Y-X, Rao W, Gao J-Y, Ding Y-J, et al. Experimental investigation of galinstan-based minichannel cooling for high heat flux and large heat power thermal management. Energy Convers Manag. 2019; 185: 248-58. https://doi.org/10.1016/j.enconman.2019.02.010

Liu J, Zhou Y-X, Lv Y-G, Li T. Liquid metal based miniaturized chip-cooling device driven by electromagnetic pump. Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology, ASMEDC; 2005, p. 501-10. https://doi.org/10.1115/IMECE2005-80188

Ma K-Q, Liu J. Heat-driven liquid metal cooling device for the thermal management of a computer chip. J Phys D Appl Phys. 2007; 40: 4722-9. https://doi.org/10.1088/0022-3727/40/15/055

Li P, Liu J. Self-driven electronic cooling based on thermosyphon effect of room temperature liquid metal. J Electron Packag. 2011; 133: 041009. https://doi.org/10.1115/1.4005297

Rui Z, Hodes M, Lower N, Wilcoxon R. Water-based microchannel and galinstan-based minichannel cooling beyond 1 kW/cm2 heat flux. IEEE Trans Compon Packaging Manuf Technol. 2015; 5: 762-70. https://doi.org/10.1109/TCPMT.2015.2426791

Zhang X-D, Li X-P, Zhou Y-X, Yang J, Liu J. Vascularized liquid metal cooling for thermal management of kW high power laser diode array. Appl Therm Eng. 2019; 162: 114212. https://doi.org/10.1016/j.applthermaleng.2019.114212

Deng Y, Zhang M, Jiang Y, Liu J. Two-stage multichannel liquid–metal cooling system for thermal management of high-heat-flux-density chip array. Energy Convers Manag. 2022; 259: 115591. https://doi.org/10.1016/j.enconman.2022.115591

Muhammad A, Selvakumar D, Iranzo A, Sultan Q, Wu J. Comparison of pressure drop and heat transfer performance for liquid metal cooled mini-channel with different coolants and heat sink materials. J Therm Anal Calorim. 2020; 141: 289-300. https://doi.org/10.1007/s10973-020-09318-2

Chen Z, Qian P, Huang Z, Luo C, Liu M. Study on flow and heat transfer of liquid metal in a new top-slotted microchannel heat sink. IOP Conf Ser Earth Environ Sci. 2021; 621: 012054. https://doi.org/10.1088/1755-1315/621/1/012054

Yu P, Ma W, Ma R, Guo Q, Yang X, Yuan Y. A numerical study of heat transfer in bottom-heated and side/top-cooled liquid metal layers with different aspect ratios. Ann Nucl Energy. 2022; 177: 109328. https://doi.org/10.1016/j.anucene.2022.109328

Muhammad A, Selvakumar D, Wu J. Numerical investigation of laminar flow and heat transfer in a liquid metal cooled mini-channel heat sink. Int J Heat Mass Transf. 2020; 150: 119265. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119265

Liu H, Shi H, Shen H, Xie G. The performance management of a Li-ion battery by using tree-like mini-channel heat sinks: Experimental and numerical optimization. Energy. 2019; 189: 116150. https://doi.org/10.1016/j.energy.2019.116150

Deng Z, Zhang S, Ma K, Jia C, Sun Y, Chen X, et al. Numerical and experimental study on cooling high power chips of data centers using double-side cooling module based on mini-channel heat sink. Appl Therm Eng. 2023; 227: 120282. https://doi.org/10.1016/j.applthermaleng.2023.120282

Shanmugam M, Sirisha Maganti L. Multi-objective optimization of parallel microchannel heat sink with inlet/outlet U, I, Z type manifold configuration by RSM and NSGA-II. Int J Heat Mass Transf. 2023; 201: 123641. https://doi.org/10.1016/j.ijheatmasstransfer.2022.123641

Zou A, Chuan R, Qian F, Zhang W, Wang Q, Zhao C. Topology optimization for a water-cooled heat sink in micro-electronics based on Pareto frontier. Appl Therm Eng. 2022; 207: 118128. https://doi.org/10.1016/j.applthermaleng.2022.118128

He P, Lu H, Fan Y, Ruan H, Wang C, Zhu Y. Numerical investigation on a lithium-ion battery thermal management system utilizing a double-layered I-shaped channel liquid cooling plate exchanger. Int J Therm Sci. 2023; 187: 108200. https://doi.org/10.1016/j.ijthermalsci.2023.108200

Yao F, Guan X, Yang M, Wen C. Study on liquid cooling heat dissipation of Li-ion battery pack based on bionic cobweb channel. J Energy Storage. 2023; 68: 107588. https://doi.org/10.1016/j.est.2023.107588

Song S, Liao Q, Shen W, Ruan Y, Xu J. Numerical study on laminar convective heat transfer enhancement of microencapsulated phase change material slurry using liquid metal with low melting point as carrying fluid. Int J Heat Mass Transf. 2013; 62: 286-94. https://doi.org/10.1016/j.ijheatmasstransfer.2013.03.013

Chen Z, Qian P, Huang Z, Zhang W, Liu M. Study on flow and heat transfer of liquid metal in the microchannel heat sink. Int J Therm Sci. 2022; 183: 107840. https://doi.org/10.1016/j.ijthermalsci.2022.107840

Charles J, Wang X, Romero CE, Neti S. Experimental characterization of low-temperature inorganic. phase change materials by differential scanning calorimetry. J Adv Therm Sci Res. 2019; 6: 71-84. https://doi.org/10.15377/2409-5826.2019.06.8

Harms TM, Kazmierczak MJ, Gerner FM. Developing convective heat transfer in deep rectangular microchannels. Int J Heat Fluid Flow. 1999; 20: 149-57. https://doi.org/10.1016/S0142-727X(98)10055-3

Liu D, Garimella S V. Analysis and optimization of the thermal performance of microchannel heat sinks. Int J Numer Methods Heat Fluid Flow. 2005; 15: 7-26. https://doi.org/10.1115/IPACK2003-35260

Xie XL, Liu ZJ, He YL, Tao WQ. Numerical study of laminar heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink. Appl Therm Eng. 2009; 29: 64-74. https://doi.org/10.1016/j.applthermaleng.2008.02.002

Montgomery DC. Design and analysis of experiments. New York: John Wiley & Son; 2004.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Liujin Xiang, Shuo Yang, Qi Wang, Jian Wu

Downloads

Download data is not yet available.