Selective Laser Sintering: Processing, Materials, Challenges, Applications, and Emerging Trends
Abstract - 12
PDF

Keywords

SLS
Materials
Processing
Challenges
Applications and Emerging Trends

How to Cite

1.
Xiao B, Ye Z. Selective Laser Sintering: Processing, Materials, Challenges, Applications, and Emerging Trends. J. Adv. Therm. Sci. Res. [Internet]. 2024 Dec. 18 [cited 2025 Mar. 26];11:65-99. Available from: https://avantipublishers.com/index.php/jatsr/article/view/1585

Abstract

Selective laser sintering (SLS) has revolutionized manufacturing by enabling the production of intricate designs with enhanced flexibility and material efficiency. The present review delves into the SLS process, its compatibility with materials such as polymers, metals, and composites, and its influence on microstructure, mechanical properties, and overall performance. It addresses challenges like dimensional accuracy, surface finish, and residual stress while highlighting applications across various industries. Additionally, the review explores emerging trends, including hybrid manufacturing and the integration of artificial intelligence, to shape future developments in SLS technology.

https://doi.org/10.15377/2409-5826.2024.11.4
PDF

References

Deckard C. Method and apparatus for producing parts by selective sintering. U.S. Patent No. 4,863,538. 1989.

Das S. Physical aspects of process control in selective laser sintering of metals. Adv Eng Mater. 2003; 5(10): 701-11. https://doi.org/10.1002/adem.200310099

Zhang S, Tang H, Tang D, Liu T, Liao W. Effect of fabrication process on the microstructure and mechanical performance of carbon fiber reinforced PEEK composites via selective laser sintering. Compos Sci Technol. 2024; 246: 110396. https://doi.org/10.1016/j.compscitech.2023.110396

Wu Z, Shi C, Chen A, Li Y, Chen S, Sun D, et al. Large-scale, abrasion-resistant, and solvent-free superhydrophobic objects fabricated by a selective laser sintering 3D printing strategy. Adv Sci. 2023; 10(9): 2207183. https://doi.org/10.1002/advs.202207183

Zhang Y, Thakkar R, Zhang J, Lu A, Duggal I, Pillai A, et al. Investigating the use of magnetic nanoparticles as alternative sintering agents in selective laser sintering (SLS) 3D printing of oral tablets. ACS Biomater Sci Eng. 2023; 9(6): 2924-36. https://doi.org/10.1021/acsbiomaterials.2c00299

Deng K, Wu H, Li Y, Jiang J, Wang M, Yang Z, Zhang R. The resin-ceramic-based Fe₃O₄/graphite composites rapidly fabricated by selective laser sintering for integration of structural-bearing and broadband electromagnetic wave absorption. J Alloys Compd. 2023; 943: 169120. https://doi.org/10.1016/j.jallcom.2023.169120

Wu Z, Sun D, Shi C, Chen S, Tang S, Li Y, et al. Moisture-thermal stable, superhydrophilic alumina-based ceramics fabricated by a selective laser sintering 3D printing strategy for solar steam generation. Adv Funct Mater. 2023; 33: 2304897. https://doi.org/10.1002/adfm.202304897

Xue C, Li N, Chen S, Liang J, Aiyiti W. The laser selective sintering controlled forming of flexible TPMS structures. Materials. 2023; 16(24): 7565. https://doi.org/10.3390/ma16247565

Choudhury D, Ponneganti S, Radhakrishnanand P, Murty US, Banerjee S. Selective laser sintering additive manufacturing of solid oral dosage form: Effect of laser power and hatch spacing on the physico-technical behaviour of sintered printlets. Appl Mater Today. 2023; 35: 101943. https://doi.org/10.1016/j.apmt.2023.101943

Ghaltaghchyan T, Khachatryan H, Asatryan K, Rstakyan V, Aghayan M. Effect of additives on selective laser sintering of silicon carbide. Bol Soc Esp Ceram Vidr. 2023; 62(6): 504-14. https://doi.org/10.1016/j.bsecv.2023.01.001

Han W, Kong L, Xu M. Advances in selective laser sintering of polymers. Int J Extrem Manuf. 2022; 4: 042002. https://doi.org/10.1088/2631-7990/ac9096

Hassan MS, Billah KMM, Hall SE, Sepulveda S, Regis JE, Marquez C, et al. Selective laser sintering of high-temperature thermoset polymer. J Compos Sci. 2022; 6(2): 41. https://doi.org/10.3390/jcs6020041

Shi Y, Li Z, Huang S, Zeng F. Effect of the properties of the polymer materials on the quality of selective laser sintering parts. Proc Inst Mech Eng L J Mater Des Appl. 2014; 218(3): 247-52. https://doi.org/10.1243/1464420041579454

Gibson I, Shi D. Material properties and fabrication parameters in selective laser sintering process. Rapid Prototyp J. 1997; 3(4): 129-36. https://doi.org/10.1108/13552549710191836

Tiwari SK, Pande S, Agrawal S, Bobade SM. Selection of selective laser sintering materials for different applications. Rapid Prototyp J. 2015; 21(6): 630-48. https://doi.org/10.1108/RPJ-03-2013-0027

Storch S, Nellessen D, Schaefer G, Reiter R. Selective laser sintering: qualifying analysis of metal-based powder systems for automotive applications. Rapid Prototyp J. 2003; 9(4): 240-51. https://doi.org/10.1108/13552540310489622

Elbadawi M, Li H, Ghosh P, Alkahtani ME, Lu B, Basit AW, et al. Cold laser sintering of medicines: toward carbon-neutral pharmaceutical printing. ACS Sustain Chem Eng. 2024; 12: 11155-66. https://doi.org/10.1021/acssuschemeng.4c01439

Williams JV, Revington PJ. Novel use of an aerospace selective laser sintering machine for rapid prototyping of an orbital blowout fracture. Int J Oral Maxillofac Surg. 2010; 39(2): 182-4. https://doi.org/10.1016/j.ijom.2009.12.002

Lv Y, Thomas W, Chalk R, Hewitt A, Singamneni S. Polyetherimide powders as material alternatives for selective laser-sintering components for aerospace applications. J Mater Res. 2020; 35(23-24): 3222-34. https://doi.org/10.1557/jmr.2020.317

Quincieu J, Robinson C, Stucker B, Mosher T. Case study: selective laser sintering of the USUSat II small satellite structure. Assem Autom. 2005; 25(4): 267-72. https://doi.org/10.1108/01445150510626389

Goulas A, Friel RJ. Laser sintering of ceramic materials for aeronautical and astronautical applications. In: Brandt M, editor. Laser additive manufacturing. Woodhead Publishing; 2017. pp. 373-98. https://doi.org/10.1016/B978-0-08-100433-3.00014-2

Agarwala S, Goh GL, Truong-Son DL, An J, Peh ZK, Yeong WY, et al. Wearable bandage-based strain sensor for home healthcare: combining 3D aerosol jet printing and laser sintering. ACS Sens. 2019; 4(1): 218-26. https://doi.org/10.1021/acssensors.8b01293

Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. 3D printing: principles and pharmaceutical applications of selective laser sintering. Int J Pharm. 2020; 586: 119594. https://doi.org/10.1016/j.ijpharm.2020.119594

Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017; 529(1-2): 285-93. https://doi.org/10.1016/j.ijpharm.2017.06.082

Tel A, Kornfellner E, Molnár E, Johannes S, Moscato F, Robiony M. Selective laser sintering at the point-of-care 3D printing laboratory in hospitals for cranio-maxillo-facial surgery: a further step into industrial additive manufacturing made available to clinicians. Ann 3D Print Med. 2024; 16: 100175. https://doi.org/10.1016/j.stlm.2024.100175

Yan CZ, Shi YS, Yang JS, Xu L. Preparation and selective laser sintering of nylon-12-coated aluminum powders. Journal of composite materials. 2009;43(17):1835-51

Subramanian K, Vail N, Barlow J, Marcus H. Selective laser sintering of alumina with polymer binders. Rapid Prototyp J. 1995; 1(2): 24-35. https://doi.org/10.1108/13552549510086844

Harada Y, Ishida Y, Miura D, Watanabe S, Aoki H, Miyasaka T, et al. Mechanical properties of selective laser sintering pure titanium and Ti-6Al-4V, and its anisotropy. Materials. 2020; 13(22): 5081. https://doi.org/10.3390/ma13225081

Yan M, Tian X, Peng G, Li D, Yao R, Zhang W, et al. Performance study of lightweight composites equipment section support fabricated by selective laser sintering. J Mech Eng. 2019; 55(13): 144-50. https://doi.org/10.3901/JME.2019.13.144

Özbay Kısasöz B, Serhatlı IE, Bulduk ME. Selective laser sintering manufacturing and characterization of lightweight PA 12 polymer composites with different hollow microsphere additives. J Mater Eng Perform. 2022; 31(5): 4049-59. https://doi.org/10.1007/s11665-021-06481-x

Chen X, Yin J, Liu X, Pei B, Huang J, Peng X, et al. Effect of laser power on mechanical properties of SiC composites rapidly fabricated by selective laser sintering and direct liquid silicon infiltration. Ceram Int. 2022; 48(13): 19123-31. https://doi.org/10.1016/j.ceramint.2022.03.203

Zhu W, Yan C, Shi Y, Wen S, Liu J, Wei Q, et al. A novel method based on selective laser sintering for preparing high-performance carbon fibers/polyamide12/epoxy ternary composites. Sci Rep. 2016; 6: 33780. https://doi.org/10.1038/srep33780

Azam MU, Belyamani I, Schiffer A, Kumar S, Askar K. Progress in selective laser sintering of multifunctional polymer composites for strain- and self-sensing applications. J Mater Res Technol. 2024; 30: 9625-46. https://doi.org/10.1016/j.jmrt.2024.06.024

Yuan Y, Wu W, Hu H, Liu D, Shen H, Wang Z. The combination of Al₂O₃ and BN for enhancing the thermal conductivity of PA12 composites prepared by selective laser sintering. RSC Adv. 2021; 11: 1984-91. https://doi.org/10.1039/D0RA09775F

Singh S, Kaur D, Singh M, Balu R, Mehta A, Vasudev H. Challenges and issues in manufacturing of components using polymer-based selective laser sintering (SLS): a review. Int J Interact Des Manuf. 2024; 1-24. https://doi.org/10.1007/s12008-024-02049-w

Han W, Kong L, Xu M. Advances in selective laser sintering of polymers. Int J Extrem Manuf. 2022; 4: 042002. https://doi.org/10.1088/2631-7990/ac9096

Petzold S, Klett J, Schauer A, Osswald TA. Surface roughness of polyamide 12 parts manufactured using selective laser sintering. Polym Test. 2019; 80: 106094. https://doi.org/10.1016/j.polymertesting.2019.106094

Tonello R, Conradsen K, Pedersen DB, Frisvad JR. Surface roughness and grain size variation when 3D printing polyamide 11 parts using selective laser sintering. Polymers. 2023; 15(13): 2967. https://doi.org/10.3390/polym15132967

Sachdeva A, Singh S, Sharma VS. Investigating surface roughness of parts produced by SLS process. Int J Adv Manuf Technol. 2013; 64: 1505-16. https://doi.org/10.1007/s00170-012-4118-z

Impey S, Saxena P, Salonitis K. Selective laser sintering induced residual stresses: precision measurement and prediction. J Manuf Mater Process. 2021; 5(3): 101. https://doi.org/10.3390/jmmp5030101

Van Zyl I, Yadroitsava I, Yadroitsev I. Residual stress in Ti6Al4V objects produced by direct metal laser sintering. S Afr J Ind Eng. 2016; 27(4): 134-41. https://doi.org/10.7166/27-4-1468

Lamikiz A, Sánchez JA, López de Lacalle LN, Arana JL. Laser polishing of parts built up by selective laser sintering. Int J Mach Tools Manuf. 2007; 47(12): 2040-50. https://doi.org/10.1016/j.ijmachtools.2007.01.013

Sanz C, García Navas V. Structural integrity of direct metal laser sintered parts subjected to thermal and finishing treatments. J Mater Process Technol. 2007; 213(12): 2126-36. https://doi.org/10.1016/j.jmatprotec.2013.06.013

Chivel Y, Smurov I. On-line temperature monitoring in selective laser sintering/melting. Phys Procedia. 2010; 5: 515-21. https://doi.org/10.1016/j.phpro.2010.08.079

Gardner MR, Lewis A, Jongwan P, McElroy AB, Estrada AD, Fish S, et al. In situ process monitoring in selective laser sintering using optical coherence tomography. Opt Eng. 2018; 57(4): 1-5. https://doi.org/10.1117/1.OE.57.4.041407

Zhang L, Phillips T, Mok A, Moser D, Beaman J. Automatic laser control system for selective laser sintering. IEEE Trans Ind Inform. 2019; 15(4): 2177-85. https://doi.org/10.1109/TII.2018.2867007

Abdalla Y, Ferianc M, Awad A, Kim J, Elbadawi M, Basit AW, et al. Smart laser sintering: deep learning-powered powder bed fusion 3D printing in precision medicine. Int J Pharm. 2024; 661(15): 124440. https://doi.org/10.1016/j.ijpharm.2024.124440

Yehia HM, Hamada A, Sebaey TA, Abd-Elaziem W. Selective laser sintering of polymers: process parameters, machine learning approaches, and future directions. J Manuf Mater Process. 2024; 8: 19. https://doi.org/10.3390/jmmp8050197

Lupone F, Padovano E, Ostrovskaya O, Russo A, Badini C. Innovative approach to the development of conductive hybrid composites for selective laser sintering. Compos Part A Appl Sci Manuf. 2021; 147: 106429. https://doi.org/10.1016/j.compositesa.2021.106429

Ferreira JAM, Santos LMS, da Silva J, Costa JM, Capela C. Assessment of the fatigue life on functional hybrid laser sintering steel components. Procedia Struct Integr. 2016; 1: 126-33. https://doi.org/10.1016/j.prostr.2016.02.018

Leu MC, Pattnaik S, Hilmas GE. Investigation of laser sintering for freeform fabrication of zirconium diboride parts. Virtual Phys Prototyp. 2012; 7(1): 25-36. https://doi.org/10.1080/17452759.2012.666119

Goodridge RD, Tuck CJ, Hague RJ. Laser sintering of polyamides and other polymers. Prog Mater Sci. 2012; 57(2): 229-67. https://doi.org/10.1016/j.pmatsci.2011.04.001

Lupone F, Padovano E, Casamento F, Badini C. Process phenomena and material properties in selective laser sintering of polymers: a review. Materials. 2022; 15: 183. https://doi.org/10.3390/ma15010183

Miao G, Du W, Pei Z, Ma C. A literature review on powder spreading in additive manufacturing. Addit Manuf. 2022; 58: 103029. https://doi.org/10.1016/j.addma.2022.103029

Yang Y, Ragnvaldsen O, Bai Y, Yi M, Xu BX. Three-dimensional non-isothermal phase-field modeling of microstructure evolution during selective laser sintering. Comput Mater. 2019; 5: 8. https://doi.org/10.1038/s41524-019-0219-7

Polivnikova T. Study and modelling of the melt pool dynamics during selective laser sintering and melting [doctoral dissertation]. Lausanne: EPFL; 2015.

Benedetti L, Brulé B, Decraemer N, Evans KE, Ghita O. Evaluation of particle coalescence and its implications in laser sintering. Powder technology. 2019;342:917-28

Soldner D, Steinmann P, Mergheim J. Modeling crystallization kinetics for selective laser sintering of polyamide 12. GAMM‐Mitt. 2021; 44(3): e202100011. https://doi.org/10.1002/gamm.202100011

Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J. Post‐processing of selective laser sintered metal parts. Rapid Prototyp J. 1995; 1(2): 36-44. https://doi.org/10.1108/13552549510086853

Zarringhalam H, Hopkinson N, Kamperman N, De Vlieger J. Effects of processing on microstructure and properties of SLS Nylon 12. Mater Sci Eng A. 2006; 435: 172-80. https://doi.org/10.1016/j.msea.2006.07.084

Chung H, Das S. Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering. Mater Sci Eng A. 2008; 487: 251-7. https://doi.org/10.1016/j.msea.2007.10.082

Zhu W, Yan C, Shi Y, Wen S, Han C, Cai C, et al. Study on the selective laser sintering of a low-isotacticity polypropylene powder. Rapid Prototyp J. 2016; 22(4): 621-9. https://doi.org/10.1108/RPJ-02-2015-0014

Guo Y, Chen H, Tian S, Xu Y, Ma K, Ma S, et al. Investigation of the ageing conditions of PEEK powder for the selective laser sintering process. Virtual Phys Prototyp. 2023; 18(1): e2273298. https://doi.org/10.1080/17452759.2023.2273298

Zhang C, Wu W, Hu H, Rui Z, Ye J, Shen H. Effect of multidimensional filler hybridization on the mechanical properties of thermoplastic polyurethane composites prepared by selective laser sintering. J Appl Polym Sci. 2023; 140(28): 1-14. https://doi.org/10.1002/app.54041

Xie F, He X, Cao S, Qu X. Structural and mechanical characteristics of porous 316L stainless steel fabricated by indirect selective laser sintering. J Mater Process Technol. 2013; 213: 838-43. https://doi.org/10.1016/j.jmatprotec.2012.12.014

Olakanmi EO, Cochrane RF, Dalgarno KW. Densification mechanism and microstructural evolution in selective laser sintering of Al-12Si powders. J Mater Process Technol. 2011; 211: 113-21. https://doi.org/10.1016/j.jmatprotec.2010.09.003

Fischer P, Locher M, Romano V, Weber HP, Kolossov S, Glardon R. Temperature measurements during selective laser sintering of titanium powder. Int J Mach Tools Manuf. 2004; 12: 1293-6. https://doi.org/10.1016/j.ijmachtools.2004.04.019

Dejan S, Kosovka O, Rebeka R, Rajko B, Dragoslav S. Selective laser melting and sintering technique of the cobalt-chromium dental alloy. Srp Arh Celok Lek. 2023; 147(11-12): 664-9. https://doi.org/10.2298/SARH190706112S

Akhtar S, Wright CS, Youseffi M, Hauser C, Childs THC, Taylor CM, et al. Direct selective laser sintering of tool steel powders to high density: part B - the effect on microstructural evolution. Int Solid Freeform Fabr Symp. 2003; 656-67.

Shahzad K, Deckers J, Kruth JP, Vleugels J. Additive manufacturing of alumina parts by indirect selective laser sintering and post processing. J Mater Process Technol. 2013; 213: 1484-94. https://doi.org/10.1016/j.jmatprotec.2013.03.014

Abdelmoula M, Küçüktürk G, Grossin D, Zarazaga AM, Maury F, Ferrato M. Direct selective laser sintering of silicon carbide: realizing the full potential through process parameter optimization. Ceram Int. 2023; 49(20): 32426-39. https://doi.org/10.1016/j.ceramint.2023.07.189

Shahzad K, Deckers J, Zhang Z, Kruth JP, Vleugels J. Additive manufacturing of zirconia parts by indirect selective laser sintering. J Eur Ceram Soc. 2014; 34(1): 81-9. https://doi.org/10.1016/j.jeurceramsoc.2013.07.023

Shuai C, Feng P, Cao C, Peng S. Processing and characterization of laser sintered hydroxyapatite scaffold for tissue engineering. Biotechnol Bioprocess Eng. 2013; 18: 520-7. https://doi.org/10.1007/s12257-012-0508-1

Olakanmi EO, Cochrane RF, Dalgarno KW. A review on selective laser sintering/melting (SLS/SLM) of aluminum alloy powders: processing, microstructure, and properties. Prog Mater Sci. 2015; 74: 401-77. https://doi.org/10.1016/j.pmatsci.2015.03.002

Gharate T, Karanwad T, Lekurwale S, Banerjee S. Effect of laser power ratios on sinterability and physical properties of 3D prototypes sintered using selective laser sintering. J 3D Print Med. 2023; 7(3): 3DP011. https://doi.org/10.2217/3dp-2023-0007

Vande Ryse R, Edeleva M, Van Stichel O, D'hooge DR, Pille F, Fiorio R, et al. Setting the optimal laser power for sustainable powder bed fusion processing of elastomeric polyesters: a combined experimental and theoretical study. Materials. 2022; 15: 385. https://doi.org/10.3390/ma15010385

Kozak J, Zakrzewski T. Accuracy problems of additive manufacturing using SLS/SLM processes. AIP Conf Proc. 2018; 2017(1): 1-12. https://doi.org/10.1063/1.5056273

Bian P, Shi J, Liu Y, Xie Y. Influence of laser power and scanning strategy on residual stress distribution in additively manufactured 316L steel. Opt Laser Technol. 2021; 132: 106477. https://doi.org/10.1016/j.optlastec.2020.106477

Hou G, Yu Z, Ye D. The influence of laser power and scanning speed on the dimensional accuracy of SLS formed parts. IOP Conf Ser Earth Environ Sci. 2021; 791: 1-9. https://doi.org/10.1088/1755-1315/791/1/012154

Jain PK, Pandey PM, Rao PVM. Experimental investigations for improving part strength in selective laser sintering. Virtual Phys Prototyp. 2008; 3(3): 177-88. https://doi.org/10.1080/17452750802065893

Chatterjee AN, Kumar S, Saha P, Mishra PK, Choudhury AR. An experimental design approach to selective laser sintering of low carbon steel. J Mater Process Technol. 2003; 136(1-3): 151-7. https://doi.org/10.1016/S0924-0136(03)00132-8

Danezan A, Delaizir G, Tessier-Doyen N, Gasgnier G, Gaillard JM, Duport P, et al. Selective laser sintering of porcelain. J Eur Ceram Soc. 2018; 38(2): 769-75. https://doi.org/10.1016/j.jeurceramsoc.2017.09.034

Li XF, Dong JH. Study on curve of pre-heating temperature control in selective laser sintering. Proc Int Symp Web Inf Syst Appl. (WISA'09) 2009; 156-8.

Sachdeva A, Singh S, Sharma VS. Investigating surface roughness of parts produced by SLS process. Int J Adv Manuf Technol. 2013; 64: 1505-16. https://doi.org/10.1007/s00170-012-4118-z

Low KH, Leong KF, Chua CK, Du ZH, Cheah CM. Characterization of SLS parts for drug delivery devices. Rapid Prototyp J. 2001; 7(5): 262-8. https://doi.org/10.1108/13552540110410468

Sofia D, Chirone R, Lettieri P, Barletta D, Poletto M. Selective laser sintering of ceramic powders with bimodal particle size distribution. Chem Eng Res Des. 2018; 136: 536-47. https://doi.org/10.1016/j.cherd.2018.06.008

Czelusniak T, Amorim FL. Selective laser sintering of carbon fiber-reinforced PA12: Gaussian process modeling and stochastic optimization of process variables. Int J Adv Manuf Technol. 2020; 110: 2049-66. https://doi.org/10.1007/s00170-020-05993-5

Abdelmoula M, Küçüktürk G, Grossin D, Zarazaga AM, Maury F, Ferrato M. Direct selective laser sintering of silicon carbide: realizing the full potential through process parameter optimization. Ceram Int. 2023; 49: 32426-39. https://doi.org/10.1016/j.ceramint.2023.07.189

Singh S, Sachdeva A, Sharma VS. Investigation of dimensional accuracy/mechanical properties of part produced by selective laser sintering. Int J Appl Sci Eng. 2012; 10(1): 59-68.

Beard MA, Ghita OR, Evans KE. Using Raman spectroscopy to monitor surface finish and roughness of components manufactured by selective laser sintering. J Raman Spectrosc. 2011; 42: 744-8. https://doi.org/10.1002/jrs.2771

Salmoria GV, Leite JL, Paggi RA. The microstructural characterization of PA6/PA12 blend specimens fabricated by selective laser sintering. Polym Test. 2009; 28: 746-51. https://doi.org/10.1016/j.polymertesting.2009.06.010

Balan GS, Raj SA, Adithya R. Effect of post-heat treatment on the mechanical and surface properties of nylon 12 produced via material extrusion and selective laser sintering processes. Polym Bull. 2024; 2: 1-26. https://doi.org/10.1007/s00289-024-05197-x

Toncheva A, Brison L, Dubois P, Laoutid F. Recycled tire rubber in additive manufacturing: selective laser sintering for polymer-ground rubber composites. Appl Sci. 2021; 11: 8778. https://doi.org/10.3390/app11188778

Patel A, Venoor V, Yang F, Chen X, Sobkowicz MJ. Evaluating poly (ether ether ketone) powder recyclability for selective laser sintering applications. Polym Degrad Stab. 2021; 185: 109502. https://doi.org/10.1016/j.polymdegradstab.2021.109502

Hettesheimer T, Hirzel S, Roß HB. Energy savings through additive manufacturing: an analysis of selective laser sintering for automotive and aircraft components. Energy Effic. 2018; 11: 1227-45. https://doi.org/10.1007/s12053-018-9620-1

Liu S, Yuen MC, White EL, Boley JW, Deng B, Cheng GJ, Kramer-Bottiglio R. Laser sintering of liquid metal nanoparticles for scalable manufacturing of soft and flexible electronics. ACS Appl Mater Interfaces. 2018; 10(33): 28232-41. https://doi.org/10.1021/acsami.8b08722

Kobryn PA, Ontko NR, Perkins LP, Tiley JS. Additive manufacturing of aerospace alloys for aircraft structures. Cost Effective Manuf Net-Shape Process, Meet Proc (RTO-MP-AVT-139) 2006; 3.

Rao PR. Advances in materials and their applications. New Delhi: New Age International Publishers; 2009.

Wong JY, Bronzino JD. Biomaterials. Boca Raton: CRC Press; 2007. https://doi.org/10.1201/9780849378898

Xiang L, Chengtao W, Wenguang Z, Yuanchao L. Fabrication and compressive properties of Ti6Al4V implant with honeycomb-like structure for biomedical applications. Rapid Prototyp J. 2010; 16(1): 44-9. https://doi.org/10.1108/13552541011011703

Williams DF. On the mechanisms of biocompatibility. Biomaterials 2008; 29(20): 2941-53. https://doi.org/10.1016/j.biomaterials.2008.04.023

Wu G, Zhou B, Bi Y, Zhao Y. Selective laser sintering technology for customized fabrication of facial prostheses. J Prosthet Dent. 2008; 100: 56-60. https://doi.org/10.1016/S0022-3913(08)60138-9

Kalpakjian S, Schmid SR. Manufacturing engineering and technology. 8th ed. Upper Saddle River: Pearson Publishing Company; 2020.

Tiwari SK, Pande S. Material properties and selection for selective laser sintering process. Int J Manuf Technol Manag. 2013; 27(4-6): 198-217. https://doi.org/10.1504/IJMTM.2013.058904

Ouellette J. Biomaterials facilitate medical breakthroughs. Ind Phys. 2001; 7(5): 18-21.

Wong KV, Hernandez A. A review of additive manufacturing. ISRN Mech Eng. 2012; 2012: 208760. https://doi.org/10.5402/2012/208760

Gibson I, Rosen WD, Stucker B. Additive manufacturing technologies: 3D printing, rapid prototyping and direct digital manufacturing. 2nd ed. UK: Springer Publishers; 2014. https://doi.org/10.1007/978-1-4939-2113-3

Kim DH, Zohdi T. Tool path optimization of selective laser sintering processes using deep learning. Comput Mech. 2022; 69(1): 383-401. https://doi.org/10.1007/s00466-021-02079-1

Verma AP. Minimizing build time and surface inaccuracy of direct metal laser sintered parts: an artificial intelligence-based optimization approach [master's thesis]. Cincinnati: University of Cincinnati; 2009. Available from: http://rave.ohiolink.edu/etdc/view?acc_num=ucin1249840383

Abdalla Y, Elbadawi M, Ji M, Alkahtani M, Awad A, Orlu M, et al. Machine learning using multi-modal data predicts the production of selective laser sintered 3D printed drug products. Int J Pharm. 2023; 633: 122628. https://doi.org/10.1016/j.ijpharm.2023.122628

Shen X, Yao J, Wang Y, Yang J. Density prediction of selective laser sintering parts based on artificial neural network. In: Advances in neural networks-ISNN 2004: International Symposium on Neural Networks, Dalian, China, August 19-21, 2004, Proceedings, Part II. Berlin Heidelberg: Springer; 2004. p. 832-40. https://doi.org/10.1007/978-3-540-28648-6_133

Tang J, Geng X, Li D, Shi Y, Tong J, Xiao H, et al. Machine learning-based microstructure prediction during laser sintering of alumina. Sci Rep. 2021; 11(1): 1-10. https://doi.org/10.1038/s41598-021-89816-x

Westphal E, Seitz H. A machine learning method for defect detection and visualization in selective laser sintering based on convolutional neural networks. Addit Manuf. 2021; 41: 101965. https://doi.org/10.1016/j.addma.2021.101965

Klamert V, Schmid-Kietreiber M, Bublin M. A deep learning approach for real-time process monitoring and curling defect detection in selective laser sintering by infrared thermography and convolutional neural networks. Procedia CIRP. 2022; 111: 317-20. https://doi.org/10.1016/j.procir.2022.08.030

La Fé-Perdomo I, Ramos-Grez JA, Jeria I, Guerra C, Barrionuevo GO. Comparative analysis and experimental validation of statistical and machine learning-based regressors for modeling the surface roughness and mechanical properties of 316L stainless steel specimens produced by selective laser melting. J Manuf Process. 2022; 80: 666-82. https://doi.org/10.1016/j.jmapro.2022.06.021

Guo Y, Lu WF, Fuh JYH. Semi-supervised deep learning-based framework for assessing manufacturability of cellular structures in direct metal laser sintering process. J Intell Manuf. 2021; 32(2): 347-59. https://doi.org/10.1007/s10845-020-01575-0

Tan KH, Chua CK, Leong KF, Cheah CM, Gui WS, Tan WS, et al. Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng. 2005; 15(1-2): 113-24.

Tapoglou N, Clulow J. Investigation of hybrid manufacturing of stainless steel 316L components using direct energy deposition. Proc Inst Mech Eng B J Eng Manuf. 2020; 235(10): 1633-43. https://doi.org/10.1177/0954405420949360

Zhang C, Wu W, Hu H, Rui Z, Ye J, Wang Z, et al. Preparation of SiO2/Si3N4ws/PU reinforced coating and its reinforcement mechanism for SLS-molded TPU materials. J Appl Polym Sci. 2023; 140(35): e54355. https://doi.org/10.1002/app.54355

Lexow MM, Drummer D. New materials for SLS: the use of antistatic and flow agents. J Powder Technol. 2016; 2016: 4101089. https://doi.org/10.1155/2016/4101089

Yuan S, Chua CK, Zhou K, Bai J, Wei J. Material evaluation and process optimization of CNT-coated polymer powders for selective laser sintering. Polymers. 2018; 8: 370. https://doi.org/10.3390/polym8100370

Aldahsh S. Development of a new composite powder material of cement additive with polyamide 12 for selective laser sintering [doctoral dissertation]. Cardiff: Cardiff University; 2016. Available from: https://orca.cardiff.ac.uk/id/eprint/10948

Mohan Krishna Sai M, Kumar S, Mandal A, Anand M. Sinterability of SS316, SiC, and TiN multi-material additive manufacturing via selective laser sintering. Opt Laser Technol. 2023; 167: 109686. https://doi.org/10.1016/j.optlastec.2023.109686

Kanczler JM, Mirmalek-Sani S, Hanley NA, Ivanov AL, Barry JJA, Upton C, et al. Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds. Acta Biomater. 2017; 5(6): 2063-71. https://doi.org/10.1016/j.actbio.2009.03.010

Wang L, Kiziltas A, Mielewski DF, Lee EC, Gardner DJ. Closed-loop recycling of polyamide12 powder from selective laser sintering into sustainable composites. J Clean Prod. 2018; 195(10): 765-72. https://doi.org/10.1016/j.jclepro.2018.05.235

Lim JXY, Pham QC. Automated post-processing of 3D-printed parts: artificial powdering for deep classification and localization. Virtual Phys Prototyp. 2021; 2833(1): 30008-14.

Zhang C, Zhu H, Hu Z, Zhang L, Zeng X. A comparative study on single-laser and multi-laser selective laser melting AlSi10Mg: defects, microstructure and mechanical properties. Mater Sci Eng A. 2019; 746: 416-23. https://doi.org/10.1016/j.msea.2019.01.024

Heeling T, Wegener K. The effect of multi-beam strategies on selective laser melting of stainless steel 316L. Addit Manuf. 2018; 22: 334-42. https://doi.org/10.1016/j.addma.2018.05.026

Chen H, Gu D, Dai D, Xia M, Ma C. A novel approach to direct preparation of complete lath martensite microstructure in tool steel by selective laser melting. Mater Lett. 2018; 227(15): 128-31. https://doi.org/10.1016/j.matlet.2018.05.042

Yang Y, Ragnvaldsen O, Bai Y, Yi M, Xu BX. 3D non-isothermal phase-field simulation of microstructure evolution during selective laser sintering. npj Comput Mater. 2023; 5(1): 81. https://doi.org/10.1038/s41524-019-0219-7

Hermann F, Chen B, Ghasemi G, Stegmaier V, Ackermann T, Reimann P, et al. A digital twin approach for the prediction of the geometry of single tracks produced by laser metal deposition. Procedia CIRP. 2022; 107: 83-8. https://doi.org/10.1016/j.procir.2022.04.014

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2024 Bin Xiao, Zhangxiang Ye

Downloads

Download data is not yet available.