Abstract
The limited solar energy absorption capacity of CaCO3 hinders its efficacy in thermochemical energy storage (TCES) systems for concentrated solar power (CSP) facilities. This study aims to tackle this problem by introducing Cu2O as a dopant in CaCO3. Cu2O possesses a bandgap that is more conducive to solar absorption. This study examines the structural, optical, and thermal characteristics of CaCO3 doped with Cu2O to improve its effectiveness in TCES applications. Therefore, the current study investigates the sunlight absorption of CaCO3 material after doping Cu2O. Cu2O in CaCO3 is doped and its UV, FTIR, and XRD characteristics are analyzed. Furthermore, non-isothermal and isothermal calcination was conducted to determine the kinetics and lower the calcination temperature limit. The results reveal that Cu2O introduced no new phase in CaCO3, and XRD data confirmed it. UV data reveals that the Cu2O-doped CaCO3 has a bandgap of 5.01 eV, while pure CaCO3 has a bandgap of 5.30 eV. According to the kinetic analysis, Cu2O-doped CaCO3 follows the three-dimensional diffusion (D3) model. Its activation energy is 644.3 kJ/mol, while pure CaCO3 follows the D1 model, and its activation energy is calculated as 234.8 kJ/mol. The lowest calcination temperature limit for pure and Cu2O-doped CaCO3 samples is 750°C. Hence, the proposed material is recommended for use in thermal energy storage applications.
References
International Energy Agency. Technology roadmap solar thermal electricity. OECD Publishing; 2015.
International Renewable Energy Agency. Renewable power generation costs in 2020. eBook Partnership; 2022.
del Río P, Peñasco C, Mir-Artigues P. An overview of drivers and barriers to concentrated solar power in the European Union. Renew Sustain Energy Rev. 2018; 81(1): 1019-29. https://doi.org/10.1016/j.rser.2017.06.038
Ortiz C, Valverde JM, Chacartegui R, Perez-Maqueda LA. Carbonation of limestone derived CaO for thermochemical energy storage: from kinetics to process integration in concentrating solar plants. ACS Sustain Chem Eng. 2018; 6(5): 6404-17. https://doi.org/10.1021/acssuschemeng.8b00199
Valverde JM, Barea-López M, Perejón A, Sánchez-Jiménez PE, Pérez-Maqueda LA. Effect of thermal pretreatment and nanosilica addition on limestone performance at calcium-looping conditions for thermochemical energy storage of concentrated solar power. Energy Fuels. 2017; 31(4): 4226-36. https://doi.org/10.1021/acs.energyfuels.6b03364
Ho CK. A review of high-temperature particle receivers for concentrating solar power. Appl Therm Eng. 2016; 109(B): 958-69. https://doi.org/10.1016/j.applthermaleng.2016.04.103
Kearney D, Kelly B, Herrmann U, et al. Engineering aspects of a molten salt heat transfer fluid in a trough solar field. Energy. 2004; 29(5-6): 861-70. https://doi.org/10.1016/S0360-5442(03)00191-9
Vignarooban K, Xu X, Arvay A, Hsu K, Kannan AM. Heat transfer fluids for concentrating solar power systems—a review. Appl Energy. 2015; 146: 383-96. https://doi.org/10.1016/j.apenergy.2015.01.125
Shah N, Arshad A, Khosa AA, Ali HM, Ali M. Thermal analysis of a mini solar pond of small surface area while extracting heat from lower convective layer. Therm Sci. 2019; 23(2A): 763-76.
Cot-Gores J, Castell A, Cabeza LF. Thermochemical energy storage and conversion: a state-of-the-art review of the experimental research under practical conditions. Renew Sustain Energy Rev. 2012; 16(7): 5207-24. https://doi.org/10.1016/j.rser.2012.04.007
Pardo P, Deydier A, Anxionnaz-Minvielle Z, Rougé S, Cabassud M, Cognet P. A review on high-temperature thermochemical heat energy storage. Renew Sustain Energy Rev. 2014; 32: 591-610. https://doi.org/10.1016/j.rser.2013.12.014
Medrano M, Gil A, Martorell I, Potau X, Cabeza LF. State of the art on high-temperature thermal energy storage for power generation. Part 2—case studies. Renew Sustain Energy Rev. 2010; 14(1): 56-72. https://doi.org/10.1016/j.rser.2009.07.036
Mohan G, Venkataraman MB, Coventry J. Sensible energy storage options for concentrating solar power plants operating above 600°C. Renew Sustain Energy Rev. 2019; 107: 319-37. https://doi.org/10.1016/j.rser.2019.01.062
Nahhas T, Py X, Sadiki N. Experimental investigation of basalt rocks as storage material for high-temperature concentrated solar power plants. Renew Sustain Energy Rev. 2019; 110: 226-35. https://doi.org/10.1016/j.rser.2019.04.060
Zalba B, Marín JM, Cabeza LF, Mehling H. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications. Appl Therm Eng. 2003; 23(3): 251-83. https://doi.org/10.1016/S1359-4311(02)00192-8
Nithyanandam K, Pitchumani R. Design of a latent thermal energy storage system with embedded heat pipes. Appl Energy. 2014; 126: 266-80. https://doi.org/10.1016/j.apenergy.2014.03.025
Block T, Schmücker M. Metal oxides for thermochemical energy storage: a comparison of several metal oxide systems. Sol Energy. 2016; 126: 195-207. https://doi.org/10.1016/j.solener.2015.12.032
Dizaji HB, Hosseini H. A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications. Renew Sustain Energy Rev. 2018; 98: 9-26. https://doi.org/10.1016/j.rser.2018.09.004
Chacartegui R, Alovisi A, Ortiz C, Valverde JM, Verda V, Becerra JA. Thermochemical energy storage of concentrated solar power by integration of the calcium looping process and a CO2 power cycle. Appl Energy. 2016; 173: 589-605. https://doi.org/10.1016/j.apenergy.2016.04.053
Rhodes NR, Barde A, Randhir K, et al. Solar thermochemical energy storage through carbonation cycles of SrCO3/SrO supported on SrZrO3. ChemSusChem. 2015; 8(22): 3793-8. https://doi.org/10.1002/cssc.201501023
Qu X, Li Y, Li P, Wan Q, Zhai F. The development of metal hydrides using as concentrating solar thermal storage materials. Front Mater Sci. 2015; 9: 317-31. https://doi.org/10.1007/s11706-015-0311-y
Sattler C, Roeb M, Agrafiotis C, Thomey D. Solar hydrogen production via sulphur-based thermochemical water-splitting. Sol Energy. 2017; 156: 30-47. https://doi.org/10.1016/j.solener.2017.05.060
Chen C, Aryafar H, Lovegrove KM, Lavine AS. Modeling of ammonia synthesis to produce supercritical steam for solar thermochemical energy storage. Sol Energy. 2017; 155: 363-71. https://doi.org/10.1016/j.solener.2017.06.049
Hong H, Jin H, Ji J, Wang Z, Cai R. Solar thermal power cycle with integration of methanol decomposition and middle-temperature solar thermal energy. Sol Energy. 2005; 78(1): 49-58. https://doi.org/10.1016/j.solener.2004.06.019
Schmidt M, Linder M. Power generation based on the Ca(OH) 2/CaO thermochemical storage system—experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design. Appl Energy. 2017; 203: 594-607. https://doi.org/10.1016/j.apenergy.2017.06.063
Romeo LM, Lara Y, Lisbona P, Martínez A. Economical assessment of competitive enhanced limestones for CO2 capture cycles in power plants. Fuel Process Technol. 2009; 90(6): 803-11. https://doi.org/10.1016/j.fuproc.2009.03.014
Cormos CC. Economic evaluations of coal-based combustion and gasification power plants with post-combustion CO2 capture using calcium looping cycle. Energy. 2014; 78: 665-73. https://doi.org/10.1016/j.energy.2014.10.054
N’Tsoukpoe KE, Liu H, Le Pierrès N, Luo L. A review on long-term sorption solar energy storage. Renew Sustain Energy Rev. 2009; 13(9): 2385-96. https://doi.org/10.1016/j.rser.2009.05.008
Martínez A, Lara Y, Lisbona P, Romeo LM. Energy penalty reduction in the calcium looping cycle. Int J Greenh Gas Control. 2012; 7: 74-81. https://doi.org/10.1016/j.ijggc.2011.12.005
Duelli G (Varela), Charitos A, Diego ME, Stavroulakis E, Dieter H, Scheffknecht G. Investigations at a 10 kWth calcium looping dual fluidized bed facility: limestone calcination and CO2 capture under high CO2 and water vapor atmosphere. Int J Greenh Gas Control. 2015; 33: 103-12. https://doi.org/10.1016/j.ijggc.2014.12.006
Lee LM, Jang YN, Ryu KW, Kim W, Bang JH. Mineral carbonation of flue gas desulfurization gypsum for CO2 sequestration. Energy. 2012; 47(1): 370-7. https://doi.org/10.1016/j.energy.2012.09.009
N’Tsoukpoe KE, Restuccia G, Schmidt T, Py X. The size of sorbents in low-pressure sorption or thermochemical energy storage processes. Energy. 2014; 77: 983-98. https://doi.org/10.1016/j.energy.2014.10.013
Perejón A, Miranda-Pizarro J, Pérez-Maqueda LA, Valverde JM. On the relevant role of solids residence time on their CO2 capture performance in the calcium looping technology. Energy. 2016; 113: 160-71. https://doi.org/10.1016/j.energy.2016.07.028
Khosa AA, Yan J, Zhao CY. Investigating the effects of ZnO dopant on the thermodynamic and kinetic properties of CaCO3/CaO TCES system. Energy. 2021; 215: 119132. https://doi.org/10.1016/j.energy.2020.119132
Lu S, Wu S. Calcination-carbonation durability of nano CaCO3 doped with Li2SO4. Chem Eng J. 2016; 294: 22-9. https://doi.org/10.1016/j.cej.2016.02.100
Khosa AA, Shah N, Han X, Naveed H. Silica dopant effect on the performance of calcium carbonate/calcium oxide-based thermal energy storage system. Therm Sci. 2024; 28(2A): 837-50. https://doi.org/10.2298/TSCI230422165K
Jing JY, Li TY, Zhang XW, Wang SD, Feng J, Turmel WA, et al. Enhanced CO2 sorption performance of CaO/Ca3Al2O6 sorbents and its sintering-resistance mechanism. Appl Energy. 2017; 199: 225-33. https://doi.org/10.1016/j.apenergy.2017.03.131
Jin D, Yu X, Yue L, Wang L. Decomposition kinetics study of AlOOH coated calcium carbonate. Mater Chem Phys. 2009; 115(1): 418-22. https://doi.org/10.1016/j.matchemphys.2008.12.013
Wang Y, Zhu Y, Wu S. A new nano CaO-based CO2 adsorbent prepared using an adsorption phase technique. Chem Eng J. 2013; 218: 39-45. https://doi.org/10.1016/j.cej.2012.11.095
Chen H, Zhang P, Duan Y, Zhao C. Reactivity enhancement of calcium-based sorbents by doping with metal oxides through the sol-gel process. Appl Energy. 2016; 162: 390-400. https://doi.org/10.1016/j.apenergy.2015.10.035
Yanase I, Maeda T, Kobayashi H. The effect of addition of a large amount of CeO2 on the CO2 adsorption properties of CaO powder. Chem Eng J. 2017; 327: 548-54. https://doi.org/10.1016/j.cej.2017.06.140
Chen X, Jin X, Liu Z, Ling X, Wang Y. Experimental investigation on the CaO/CaCO3 thermochemical energy storage with SiO2 doping. Energy. 2018; 155: 128-38. https://doi.org/10.1016/j.energy.2018.05.016
Shui M, Yue L, Hua Y, Xu Z. The decomposition kinetics of the SiO2 coated nano-scale calcium carbonate. Thermochim Acta. 2002; 386(1): 43-9. https://doi.org/10.1016/S0040-6031(01)00723-7
Mathew A, Nadim N, Chandratilleke TT, Paskevicius M, Humphries TD, Buckley CE. Kinetic investigation and numerical modelling of CaCO3/Al2O3 reactor for high-temperature thermal energy storage application. Sol Energy. 2022; 241: 262-74. https://doi.org/10.1016/j.solener.2022.06.005
Coats AW, Redfern JP. Kinetic parameters from thermogravimetric data. Nature. 1964; 201(4914): 68-9. https://doi.org/10.1038/201068a0
Achar BN, Brindley GW, Sharp JH. Kinetics and mechanism of dehydroxylation processes. III. Applications and limitations of dynamic methods. In: Proceedings of the International Clay Conference. Jerusalem: 1966.
Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957; 29(11): 1702-6. https://doi.org/10.1021/ac60131a045
Khosa AA, Zhao C. Heat storage and release performance analysis of CaCO3/CaO thermal energy storage system after doping nano silica. Sol Energy. 2019; 188: 619-30. https://doi.org/10.1016/j.solener.2019.06.048
Xu TX, Tian XK, Khosa AA, Yan J, Ye Q, Zhao CY. Reaction performance of CaCO3/CaO thermochemical energy storage with TiO2 dopant and experimental study in a fixed-bed reactor. Energy. 2021; 236: 121451. https://doi.org/10.1016/j.energy.2021.121451
Zhang M, He X, Xue Y, Lin Z, Tong NH, Lai W, Liang S. Improving thermoelectric properties of Cu2O powder via interface modification. Solid State Commun. 2022; 357: 114982. https://doi.org/10.1016/j.ssc.2022.114982
Pan J, Liu G. Chapter Ten - Facet control of photocatalysts for water splitting. In: Mi Z, Wang L, Jagadish C, editors. Semiconductors and Semimetals. Elsevier; 2017, p. 349-91. https://doi.org/10.1016/bs.semsem.2017.04.003
Vyazovkin S, Burnham AK, Criado JM, Pérez-Maqueda LA, Popescu C, Sbirrazzuoli N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta. 2011; 520(1): 1-19. https://doi.org/10.1016/j.tca.2011.03.034
Webb PB, Dearnley JH, McConville JC. Characterization of metal oxide-carbonate composites by X-ray diffraction. J Appl Crystallogr. 2004; 37(5): 631-7.
Sutherland BR, Williams AC, Blake CL. X-ray diffraction studies of calcium carbonate polymorphs. J Solid State Chem. 1980; 32(2): 148-54.
Islam SM, Khan SMZS, Hasan MT. X-ray diffraction and optical studies of Cu2O nanoparticles. Mater Chem Phys. 2014; 147(1-2): 238-44.
Kim HS, Kim SM, Park SM. Optical properties of Cu2O thin films and its application to optoelectronics. J Appl Phys. 2009; 106(12): 123512.
Trinh TT, Chen CHK. Band gap and optical characteristics of CaCO3. Mater Sci Eng B. 2015; 192: 37-42.
Wang LW, Wang XY, Chen HX. Optical and electronic properties of metal oxide composites: Cu2O and CaCO3. J Compos Mater. 2015; 49(21): 2621-30.
Akinmoladun AO, Ojo JO, Akinmoladun DT. FTIR and X-ray diffraction studies of Cu2O nanoparticles synthesized by chemical reduction method. J Nanomater. 2012.
Reddy MM, Reddy VPV. Infrared and Raman spectroscopy of calcium carbonate and its polymorphs. J Mol Struct. 2000; 534(1-3): 1-16.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2024 Azhar Abbas Khosa, Xinyue Han, Ghulam Abbas Ashraf