Abstract
Climate change has a huge challenge to 2050. Some renewable energies can be installed to reduce CO2 production. Unfortunately, the photovoltaic systems, wind energy, and ocean energy devices do not have direct thermal applications. These systems are useful for people’s electricity consumption. Absorption heat pumps (AHP) are thermal devices for increasing the temperature level from an energy source at medium temperature level, such as plane solar collectors, to another energy sink. The main problem with design, power calculations and device construction is a lack of education about this technology, which is more complex than compression heat pumps but with 90 % less electric energy consumption that would be supplied by photovoltaic cells. This paper shows an approximation for future engineers designing several absorption heat pumps to avoid global warming beyond the Paris Agreement. Future engineers should be encouraged to analyze this technology with this first and basic approach.
References
IEA (2020), World Energy Outlook 2020, IEA, Paris; https://www.iea.org/reports/world-energy-outlook-2020/ verified on January 1st, 2021.
IEA (2020), Cooling Emissions and Policy Synthesis Report, IEA, Paris https://www.iea.org/reports/cooling-emissions-and-policy-synthesis-report verified on October 2th, 2020.
IEA (2020), Energy Technology Perspectives 2020, IEA, Paris https://www.iea.org/reports/energy-technology-perspectives-2020 acceded on October 2th, 2020.
Thow, A., Vernaccini, L., Poljansek, K. and Marin Ferrer, M., INFORM report 2020: Shared evidence for managing crisis and disaster, Publications Office ofthe European Union, Luxembourg, 2020, ISBN 978-92-76-17910-8 (online),978-92-76-17909-2 (print),978-92-76-20651-4 (ePub), JRC120275.
RJ Romero, 2018, Will we need oil in 2060?, Progress in Petrochemical Science, Vol. 1 (2), pp 3. https://doi.org/10.31031/pps.2018.01.000507
IEA (2020), Heat Pumps, IEA, Paris https://www.iea.org/reports/heat-pumps verified on August 13th, 2020.
www.sciencedirect.com, consulted at December 15th, 2020.
Antón, R., Ramos, J. C., Gómez-Acebo, T., Rivas, A., & Lardizabal, P. M. Análisis termodinámico y térmico de un ciclo frigorífico mediante un laboratorio virtual.
Tasnádi, A. M. (2016). From heat pumps to hurricanes: application of thermodynamic in secondary education, Teaching Physics Innovatively, 287.
Bonin, J. (2015). Heat pump planning handbook; 1st Edition, English version, Berlin, Germany, Routledge. https://doi.org/10.4324/9781315708584
Von Cube, H. L., & Steimle, F. (2013). Heat pump technology, English Editions, 1st Edition, London, U.K., Elsevier.
Herold, K. E., Radermacher, R., & Klein, S. A. (2016). Absorption chillers and heat pumps, 2nd Edition, Florida, U.S.A., CRC press. https://doi.org/10.1201/b19625
Chiasson, A. D. (2016). Geothermal heat pump and heat engine systems: Theory and practice. JohnWiley & Sons. https://doi.org/10.1002/9781118961957
Chiasson, A. D. (2016). Geothermal heat pump and heat engine systems: Theory and practice. 1st Edition, West Sussex, U. K., John Wiley & Sons. https://doi.org/10.1002/9781118961957
Rees, S. (Ed.). (2016). Advances in ground-source heat pump systems, 1st Edition, Kidlington, U. K., Elsevier -Woodhead Publishing.
Brodowicz, K., Dyakowski, T., & Wyszynski, M. L. (2013). Heat pumps, English Version from 1st Poland Edition, Trowbridge, U. K., Elsevier –Butterworth Heinemann.
Huang, H. (Ed.). (2020). Heat Pumps for Cold Climate Heating: Variable Volume Ratio Two-stage Vapor Compression Air Source Heat Pump Technology and Applications, 1ST Edition, Florida, U.S.A., CRC Press. https://doi.org/10.1201/9781003029366
IEA (2020), Heat pumps in district heating and cooling systems, IEA, Paris https://www.iea.org/articles/heat-pumps-in-district-heating-and-cooling-systems verified on December 15th, 2020.
Geyer, R., Hangartner D., Lindahl M., Pedersen S. V. (2019), IEA Heat Pumping Technologies Annex 47 Heat Pumps in District Heating and Cooling Systems, IEA -Heat Pump Centre, Borås, Sweden.
Romero, R. J., Silva-Sotelo, S., Martínez, R., & Román, J. C. (2013). Energy saving in advanced absorption heat pump with object oriented programming. In Emerging Trends in Computing, Informatics, Systems Sciences, and Engineering (pp. 1101-1111). Springer, New York,NY. https://doi.org/10.1007/978-1-4614-3558-7_94
Rivera, W., Best, R., Cardoso, M. J., & Romero, R. J. (2015). A review of absorption heat transformers. Applied Thermal Engineering, 91, 654-670. https://doi.org/10.1016/j.applthermaleng.2015.08.021
Parham,K., Khamooshi, M., Tematio, D. B. K., Yari, M., & Atikol, U. (2014). Absorption heat transformers–a comprehensive review. Renewable and Sustainable Energy Reviews, 34, 430-452. https://doi.org/10.1016/j.rser.2014.03.036
Donnellan, P., Cronin, K., & Byrne,E. (2015). Recycling waste heat energy using vapour absorption heat transformers: A review. Renewable and Sustainable Energy Reviews, 42, 1290-1304. https://doi.org/10.1016/j.rser.2014.11.002
Ibarra-Bahena, J., Romero, R. J., Velazquez-Avelar, L., Valdez-Morales, C. V., & Galindo-Luna, Y. R. (2015). Experimental thermodynamic evaluation for a single stage heat transformer prototype build with commercial PHEs. Applied Thermal Engineering, 75, 1262-1270. https://doi.org/10.1016/j.applthermaleng.2014.05.018
Ibarra-Bahena, J., & Romero, R. J. (2014). Performance of different experimental absorber designs in absorption heat pump cycle technologies: a review. Energies, 7(2), 751-766. https://doi.org/10.3390/en7020751
Romero, R. J., Rivera, W., Gracia, J., & Best,R. (2001). Theoretical comparison of performance of an absorption heat pump system for cooling and heating operating with an aqueous ternary hydroxide and water/lithium bromide. Applied Thermal Engineering, 21(11), 1137-1147. https://doi.org/10.1016/s1359-4311(00)00111-3
Romero, R. J., & Rodríguez-Martínez, A. (2008). Optimal water purification using low grade waste heat in an absorption heat transformer. Desalination, 220(1-3), 506-513. https://doi.org/10.1016/j.desal.2007.05.026
Romero, R. J., Siqueiros,J., & Huicochea, A. (2007). Increase of COP for heat transformer in water purification systems. Part II–Without increasing heat source temperature. Applied Thermal Engineering, 27(5-6), 1054-1061. https://doi.org/10.1016/j.applthermaleng.2006.07.041
Rivera, W., Romero, R. J., Cardoso, M. J., Aguillón, J., & Best, R. (2002). Theoretical and experimental comparison of the performance of a single‐stage heat transformer operating with water/lithium bromide and water/Carrol™. International journal of energy research, 26(8), 747-762. https://doi.org/10.1002/er.813
Ibarra-Bahena, J., Romero, R. J., Cerezo, J., Valdez-Morales, C. V., Galindo-Luna, Y. R., & Velazquez-Avelar, L. (2015). Experimental assessment of an absorption heat transformer prototype at different temperature levels into generator and into evaporator operating with water/Carrol mixture. Experimental Thermal and Fluid Science, 60, 275-283. https://doi.org/10.1016/j.expthermflusci.2014.09.013
Rivera, W., & Romero, R. J. (1998). Thermodynamic design data for absorption heat transformers. part seven: operating on an aqueous ternary hydroxide. Applied thermal engineering, 18(3-4), 147-156. https://doi.org/10.1016/s1359-4311(97)00026-4
Rivera, W., Romero, R. J., Best, R., & Heard, C. L. (1999). Experimental evaluation of a single-stage heat transformer operating with the water/Carrol™ mixture. Energy, 24(4), 317-326. https://doi.org/10.1016/s0360-5442(98)00097-8
Valdez-Morales, C. V., Romero, R. J., & Ibarra-Bahena, J. (2017). Predicted and experimental COP for heat transformer based on effectiveness process. Experimental Thermal and Fluid Science, 88, 490-503. https://doi.org/10.1016/j.expthermflusci.2017.06.020
Wakim, M., & Rivera-Tinoco, R. (2019). Absorption heat transformers: Sensitivity study to answer existing discrepancies. Renewable energy, 130, 881-890. https://doi.org/10.1016/j.renene.2018.06.111
Hdz–Jasso, A. M., Contreras–Valenzuela, M. R., Rodríguez–Martínez, A., Romero, R. J., & Venegas, M. (2015). Experimental heat transformer monitoring based on linear modelling and statistical control process. Applied Thermal Engineering, 75, 1271-1286. https://doi.org/10.1016/j.applthermaleng.2014.09.013
S Mahmoudi, S. M., Salehi, S., Yari, M., & Rosen, M. A. (2017). Exergoeconomic performance comparison and optimization of single-stage absorption heat transformers. Energies, 10(4), 532. https://doi.org/10.3390/en10040532
Reimann R. and Biermann W.J. 1984, Development of a single family absorption chiller for use in solar heating and cooling system, Phase III, Final Report, Prepared for the U.S. Deparment of Energy unde contract EG-77-C-03-1587, Carrier Corporation.
W. Rivera, J. Cerezo, H. Martínez, Energy and exergy analysis of an experimental single-stage heat transformer operating with the water/lithium bromide mixture, Int. J. Energy Res. 34 (2010) 1121-1131. https://doi.org/10.1002/er.1628
J. Kim, K. Cho, Analytical and experimental study on the absorption performance in the vertical absorber, in: Proc. Of the Int. Sorption Heat Pump Conf., Shanghai, China, 2002, pp. 315-319.
S.M. Deng, W.B. Ma, Experimental studies on the characteristics of an absorber using LiBr/H2O solution as working fluid, Int.J. Refrig. 22 (1999) 293-301. https://doi.org/10.1016/s0140-7007(98)00067-x
X. Ma, Z. Lan, Z. Hao, Q. Wang, S. Bo, T. Bai, Heat transfer and thermodynamic performance of LiBr/H2O absorption heat transformer with vapor absorption inside vertical spiral tubes, Heat. Transf. Eng. 35 (2014) 1130-1136. https://doi.org/10.1080/01457632.2013.863550
W. Rivera, J. Cerezo, Experimental study of the use of additives in the performance of a single-stage heat transformer operating with water-lithium bromide, Int. J. Energy Res. 29 (2005) 121-130. https://doi.org/10.1002/er.1045
S. Silva-Sotelo, R.J. Romero, Improvement of recovery energy in the absorption heat transformer process using water-Carrol for steam generation, Chem. Eng. Trans. 17 (2009) 317-322.
S. Sekar, R. Saravanan, Experimental studies on absorption heat transformer coupled distillation system, Desalination 274 (2011) 292-301. https://doi.org/10.1016/j.desal.2011.01.064
Gómez-Arias, E., Ibarra-Bahena, J., Velazquez-Avelar, L., Romero, R. J., Rodríguez-Martínez, A., & Montiel-González, M. (2014). Temperature and concentration fields in a generator integrated to single stage heat transformer using Water/Carrol mixture. Journal of Thermal Science, 23(6), 564-571. https://doi.org/10.1007/s11630-014-0742-2
X. Ma, J. Chen, S. Li, Q. Sha, A. Liang, W. Li, J. Zhang, G. Zheng, Z. Feng, Application of absorption heat transformer to recover waste heat from a synthetic rubber plant, Appl. Therm. Eng. 23 (2003) 797-806. https://doi.org/10.1016/s1359-4311(03)00011-5
I. Horuz I., B. Kurt, Absorption heat transformers and an industrial application, Renew. Energy 35 (2010) 2175-2181. https://doi.org/10.1016/j.renene.2010.02.025
A. Sözen, Effect of irreversibilities on performance of an absorption heat transformer used to increase solar pond's temperature, Renew. Energy 29 (2003) 501-515. https://doi.org/10.1016/j.renene.2003.09.004
V. Tufano, Heat recovery in distillation by means of absorption heat pumps and heat transformers, Appl. Therm. Eng. 17 (2) (1997) 171-178. https://doi.org/10.1016/s1359-4311(96)00018-x
M. Bourouis, A. Coronas, R.J. Romero, J. Siqueiros, Purification of seawater using absorption heat transformers with water-(LiBrþLiIþLiNO3þLiC1) and low temperature heat sources, Desalination 166 (2004) 209-214. https://doi.org/10.1016/j.desal.2004.06.075
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.