Process Simulation of Wet Flue Gas Desulfurization

Authors

  • Changhong Li Henan International Joint Laboratory of Energy, Efficient Conversion and Utilization, School of Energy, and Power Engineering, Zhengzhou University of Light, Industry, PR China
  • Baiqiang Zhang Henan International Joint Laboratory of Energy, Efficient Conversion and Utilization, School of Energy, and Power Engineering, Zhengzhou University of Light, Industry, PR China
  • Junhui Li Henan International Joint Laboratory of Energy, Efficient Conversion and Utilization, School of Energy, and Power Engineering, Zhengzhou University of Light, Industry, PR China
  • Yanhao Hu Henan International Joint Laboratory of Energy, Efficient Conversion and Utilization, School of Energy, and Power Engineering, Zhengzhou University of Light, Industry, PR China

DOI:

https://doi.org/10.15377/2409-983X.2024.11.5

Keywords:

Simulation, Aspen plus, Calcium-sulfur ratio, Optimization analysis, Wet flue gas desulfurization

Abstract

During combustion in power plants, sulfur in coal forms SO2, a key air pollutant causing acid rain. Denitrification of SO2 in exhaust gases is crucial, and simulation is a practical research approach. This article applies Aspen Plus software to simulate and optimize the limestone-gypsum wet flue gas desulfurization process. The results show that the established model can effectively reduce SO2 content, achieving a desulfurization rate of 95.9%, which verifies the feasibility of the process flow. Through sensitivity analysis and orthogonal experiments, it is found that the inlet temperature of flue gas, calcium-sulfur ratio, and water content in limestone slurry are the key factors affecting the desulfurization efficiency. The optimal operating parameter combination is an inlet temperature of flue gas of 80°C, a calcium-sulfur ratio of 1.03, and water content in limestone slurry of 35 kmol/hr, with the calcium-sulfur ratio having the most significant impact on desulfurization efficiency. The study indicates that the combination of this software and the process has good application prospects.

Downloads

Download data is not yet available.

References

Liu X, Lin B, Zhang Y. Sulfur dioxide emission reduction of power plants in China: current policies and implications. J Clean Prod. 2016; 113: 133-43. https://doi.org/10.1016/j.jclepro.2015.12.046 DOI: https://doi.org/10.1016/j.jclepro.2015.12.046

Elehinafe FB, Aondoakaa EA, Akinyemi AF, Agboola O, Okedere OB. Separation processes for the treatment of industrial flue gases - Effective methods for global industrial air pollution control. Heliyon. 2024; 10(11): e32428. https://doi.org/10.1016/j.heliyon.2024.e32428 DOI: https://doi.org/10.1016/j.heliyon.2024.e32428

Zhang X, Wang Z, Cheng M, Wu X, Zhan N, Xu J. Long-term ambient SO2 concentration and its exposure risk across China inferred from OMI observations from 2005 to 2018. Atmos Res. 2021; 247: 105150. https://doi.org/10.1016/j.atmosres.2020.105150 DOI: https://doi.org/10.1016/j.atmosres.2020.105150

Cui L, Lu J, Song X, Tang L, Li Y, Dong Y. Energy conservation and efficiency improvement by coupling wet flue gas desulfurization with condensation desulfurization. Fuel. 2021; 285: 119209. https://doi.org/10.1016/j.fuel.2020.119209 DOI: https://doi.org/10.1016/j.fuel.2020.119209

Leppert D. "No fences make bad neighbors" but markets make better ones: cap-and-trade reduces cross-border SO2 in a natural experiment. Environ Econ Policy Stud. 2023; 25(3): 407-33. https://doi.org/10.1007/s10018-023-00367-z DOI: https://doi.org/10.1007/s10018-023-00367-z

Li XK, Han JR, Liu Y, Dou ZH, Zhang TA. Summary of research progress on industrial flue gas desulfurization technology. Sep Purif Technol. 2022; 281: 119849. https://doi.org/10.1016/j.seppur.2021.119849

Ning H, Tang R, Li C, Gu X, Gong Z, Zhu C, et al. Recent advances in process and materials for dry desulfurization of industrial flue gas: an overview. Sep Purif Technol. 2025; 353: 128425. https://doi.org/10.1016/j.seppur.2024.128425 DOI: https://doi.org/10.1016/j.seppur.2024.128425

de Castro RdPV, de Medeiros JL, Araújo OdQF, de Andrade Cruz M, Ribeiro GT, de Oliveira VR. Fluidized bed treatment of residues of semi-dry flue gas desulfurization units of coal-fired power plants for conversion of sulfites to sulfates. Energy Convers Manag. 2017; 143: 173-87. https://doi.org/10.1016/j.enconman.2017.03.078 DOI: https://doi.org/10.1016/j.enconman.2017.03.078

Zhao Z, Zhang Y, Gao W, Baleta J, Liu C, Li W, et al. Simulation of SO2 absorption and performance enhancement of wet flue gas desulfurization system. Process Saf Environ Prot. 2021; 150: 453-63. https://doi.org/10.1016/j.psep.2021.04.032 DOI: https://doi.org/10.1016/j.psep.2021.04.032

Wu H, Wang Y, Liu Y, Guo S, Zhong Z. Experimental and simulation study of flue gas desulfurization using the limestone-gypsum wet method under an oxygen-enriched combustion atmosphere. J Energy Inst. 2025; 119: 101999. https://doi.org/10.1016/j.joei.2025.101999 DOI: https://doi.org/10.1016/j.joei.2025.101999

Lim J, Choi Y, Kim G, Kim J. Modeling of the wet flue gas desulfurization system to utilize low-grade limestone. Korean J Chem Eng. 2020; 37(12): 2085-93. https://doi.org/10.1007/s11814-020-0639-6 DOI: https://doi.org/10.1007/s11814-020-0639-6

Koralegedara NH, Pinto PX, Dionysiou DD, Al-Abed SR. Recent advances in flue gas desulfurization gypsum processes and applications - a review. J Environ Manag. 2019; 251: 109572. https://doi.org/10.1016/j.jenvman.2019.109572 DOI: https://doi.org/10.1016/j.jenvman.2019.109572

Agarwal R, Shao Y. Process simulations and techno-economic analysis with Aspen Plus. 2024. p. 17-73. https://doi.org/10.1007/978-3-031-11335-2_3 DOI: https://doi.org/10.1007/978-3-031-11335-2_3

Wang A, Li S, Zheng Q, Zhang S, Zhang S, Wang Z, et al. Study on the effects of wet flue gas desulfurization on particulate matter emission from industrial coal-fired power plants. 2023; 10(6): 356. https://doi.org/10.3390/separations10060356 DOI: https://doi.org/10.3390/separations10060356

Jiang J, Yang HW, Liu F, Zhang XF, Wei HY. Analysis of thermal and water equilibrium and desulfurization efficiency after waste heat recovered from a wet flue gas desulfurization system. Asia-Pac J Chem Eng. 2020; 15(2): e2413. https://doi.org/10.1002/apj.2413 DOI: https://doi.org/10.1002/apj.2413

Zhang Y, Wang Y, Liu Y, Gao H, Shi Y, Lu M, et al. Experiments and simulation of varying parameters in cryogenic flue gas desulfurization process based on Aspen Plus. Sep Purif Technol. 2021; 259: 118223. https://doi.org/10.1016/j.seppur.2020.118223 DOI: https://doi.org/10.1016/j.seppur.2020.118223

Liao Y. The selection and application of anticorrosive materials for flue gas desulfurization (FGD) system in cement plant. J Mater Sci Chem Eng. 2020; 8: 79-90. https://doi.org/10.4236/msce.2020.84006 DOI: https://doi.org/10.4236/msce.2020.84006

Li X, Han J, Liu Y, Dou Z, Zhang TA. Summary of research progress on industrial flue gas desulfurization technology. Sep Purif Technol. 2022; 281: 119849. https://doi.org/10.1016/j.seppur.2021.119849 DOI: https://doi.org/10.1016/j.seppur.2021.119849

Gao ZY, Fan JH, Chen YJ, Liang RR, Sun LW, Ding Y, et al. Effect of simulated flue gas of O2/CO2 combustion on regeneration catalyst. Chin J Environ Eng. 2017; 11(6): 3715-21.

Hou Y, Zhang Q, Gao M, Ren S, Wu W. Absorption and conversion of SO2 in functional ionic liquids: effect of water on the Claus reaction. ACS Omega. 2022; 7(12): 10413-9. https://doi.org/10.1021/acsomega.1c07139 DOI: https://doi.org/10.1021/acsomega.1c07139

Kim K-I, Ri J-H, Kim S-U, Kim I-H. Estimation of interaction parameters of electrolyte NRTL model based on NaCN and Na2CO3 solubility in water-ethanol mixed solvent and process simulation for separation of NaCN/Na2CO3. SN Appl Sci. 2020; 2(12): 2112. https://doi.org/10.1007/s42452-020-03914-5 DOI: https://doi.org/10.1007/s42452-020-03914-5

Jiamin S, Chengcheng Y, Lijing Z, Gang T. Aspen Plus simulation and analysis of methanol synthesis process. 2023; 385: 04009. https://doi.org/10.1051/e3sconf/202338504009 DOI: https://doi.org/10.1051/e3sconf/202338504009

Chen X, Sun P, Cui L, Xu W, Dong Y. Limestone-based dual-loop wet flue gas desulfurization under oxygen-enriched combustion. Fuel. 2022; 322: 124161. https://doi.org/10.1016/j.fuel.2022.124161 DOI: https://doi.org/10.1016/j.fuel.2022.124161

Yang L, Cai Y, Lu L. Experimental study on simultaneous desulfurization and denitrification by DBD combined with wet scrubbing. Appl Sci. 2021; 11(18): 8592. https://doi.org/10.3390/app11188592 DOI: https://doi.org/10.3390/app11188592

Downloads

Published

2024-12-19

Issue

Section

Articles

How to Cite

1.
Process Simulation of Wet Flue Gas Desulfurization. J. Chem. Eng. Res. Updates. [Internet]. 2024 Dec. 19 [cited 2026 Feb. 13];11:80-9. Available from: https://avantipublishers.com/index.php/jceru/article/view/1591

Similar Articles

11-20 of 34

You may also start an advanced similarity search for this article.