Volatile Terpenoids from Water Pepper (Polygonum punctatum) Against Pseudomonas aeruginosa and Staphylococcus aureus Virulence Strategies
DOI:
https://doi.org/10.15377/2409-9813.2014.01.01.1Keywords:
Isotadeonal, biofilm, Polygonum punctatum, Pseudomonas aeruginosa, Staphylococcus aureus.Abstract
Polygonum punctatum Elliot (water pepper) is a pungent herb ancestrally employed as a disinfectant in traditional medicine by Toba Indians of the north-eastern region of Argentina and also commonly used as spice in Japanese cuisine. GC-MS of whole diethyl ether extract (EE) from aerial parts allowed to identify 14 volatile terpenoids such as sesquiterpenes: α-bisabolol (3.4 %), polygodial and isotadeonal (34.0%); various methylated phenol like α-tocopherol or vitamin E (3.6 %), and phytosterols: stigmasterol (2.1%) and β-sitosterol (29.9 %). Thus, water pepper is a promising source of drimane sesquiterpenes and phytoestrogens with important bioactivities.
Following a taste- guided fractionation by CC and HPLC, drimane-type sesquiterpenes, polygodial (1) and its stereoisomer isotadeonal (2) were isolated as main compounds from the EE. The antipathogenic effects on the bacterial growth, biofilm formation, and elastase activity of both pure compounds and EE were evaluated against two Staphylococcus aureus and two Pseudomonas aeruginosa strains at 10 and 100 µg/mL.
The highest effects were observed for the non pungent drimane isotadeonal (2) which was able to reduce about 75 % the bacterial growth of all tested microorganisms and to inhibit Gram-positive biofilm formation (85 % mean) at 100 µg/mL. In addition, elastase activity of P. aeruginosa, another virulence strategy, was attenuated more than 50 % at 100 µg/mL by 2.
These results provide evidence that support the antimicrobial use of P. punctatum against P. aeruginosa and S. aureus, as well as, demonstrating that isotadeonal (2), despite it has been suggested to lack biological properties, is a bioactive compound able to control biofilm formation and bacterial growth of both human pathogens.
Downloads
References
Wang KJ, Zhang YJ, Yang CR. Antioxidant phenolic compounds from rhizomes of Polygonum paleaceum. J Ethnopharmacol 2005; 96: 483-7. http://dx.doi.org/10.1016/j.jep.2004.09.036 DOI: https://doi.org/10.1016/j.jep.2004.09.036
Derita MG, Gattuso SJ, Zacchino SA. Occurrence of polygodial in species of Polygonum genus belonging to Persicaria section. Biochem Syst Ecol 2008; 36: 55-8. http://dx.doi.org/10.1016/j.bse.2007.05.011 DOI: https://doi.org/10.1016/j.bse.2007.05.011
López SN, Sierra MG, Gattuso SJ, Furlán RL, Zacchino SA. An unusual homoisoflavanone and a structurally-related dihydrochalcone from Polygonum ferrugineum (Polygonaceae). Phytochemistry 2006; 67: 2152-8. http://dx.doi.org/10.1016/j.phytochem.2006.06.018 DOI: https://doi.org/10.1016/j.phytochem.2006.06.018
Jonassohn M. Sesquiterpenoids unsaturaded dialdehydes. Ph D Thesis, Lunde University 1996.
Kubo I, Fujita K, Lee SH. Antifungal mechanism of polygodial. J Agric Food Chem 2001; 49: 1607-11. http://dx.doi.org/10.1021/jf000136g DOI: https://doi.org/10.1021/jf000136g
Kubo I, Fujita KI, Lee SH, Ha TJ. Antibacterial activity of polygodial. Phytother Res 2005; 19: 1013-7. http://dx.doi.org/10.1002/ptr.1777 DOI: https://doi.org/10.1002/ptr.1777
Alves TMDA, Ribeiro FL, Kloos H, Zani CL. Polygodial, the Fungitoxic Component from the Brazilian Medicinal Plant Polygonum punctatum. Mem I Oswaldo Cruz 2001; 96: 831- 3. http://dx.doi.org/10.1590/S0074-02762001000600016 DOI: https://doi.org/10.1590/S0074-02762001000600016
Martínez-Crovetto R, Las plantas utilizadas en medicina popular en el noroeste de Corrientes (República Argentina), Ministerio de Cultura y Educación, Tucumán, Argentina, 1981.
Penna C, Marino S, Vivot E, Cruañes MC, De D, Muñoz J, et al. Antimicrobial activity of Argentine plants used in the treatment of infectious diseases. Isolation of active compounds from Sebastiania brasiliensis. J Ethnopharmacol 2001; 77: 37-40. http://dx.doi.org/10.1016/S0378-8741(01)00266-5 DOI: https://doi.org/10.1016/S0378-8741(01)00266-5
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: A common cause of persistent infections. Science 1999; 284: 1318-22. http://dx.doi.org/10.1126/science.284.5418.1318 DOI: https://doi.org/10.1126/science.284.5418.1318
Chmielewski RAN, Ftank JF. Inactivation of Listeria monocytogenes biofilms using chemical sanitizers and heat. In: Blaschek HP, Wang HH, Alge ME, Eds. Biofilms in the Food Environment. Iowa: Blackwell Publishing, 2007; pp. 73- 104. DOI: https://doi.org/10.1002/9780470277782.ch4
Paz C, Cárcamo G, Silva M, Becerra J, Urrutia H, Sossa K. Drimendiol, a drimane sesquiterpene with quorum sensing inhibition activity. Nat Prod Comun 2013; 8: 147-8. DOI: https://doi.org/10.1177/1934578X1300800201
Stewart PS, Costerton JW. Antibiotic resistance of bacteria in biofilms. Lancet 2001; 358: 135-8. http://dx.doi.org/10.1016/S0140-6736(01)05321-1 DOI: https://doi.org/10.1016/S0140-6736(01)05321-1
Sokol PA, Kooi C, Hodges RS, Cachia P, Woods DE. Immunization with a Pseudomonas aeruginosa elastase peptide reduces severity of experimental lung infections due to P. aeruginosa or Burkholderia cepacia. J Infect Dis 2000; 181: 1682-92. http://dx.doi.org/10.1086/315470 DOI: https://doi.org/10.1086/315470
O'Toole GA, Kolter R. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 1998; 30: 295-304. http://dx.doi.org/10.1046/j.1365-2958.1998.01062.x DOI: https://doi.org/10.1046/j.1365-2958.1998.01062.x
Caballero AR, Moreau JM, Engel LS, Marquart ME, Hill JM, O'Callaghan RJ. Pseudomonas aeruginosa protease IV enzyme assays and comparison to other Pseudomonas proteases. Anal Biochem 2001; 290: 330-7. http://dx.doi.org/10.1006/abio.2001.4999 DOI: https://doi.org/10.1006/abio.2001.4999
Mashimbye MJ, Maumela MC, Drewes SE. A drimane sesquiterpenoid lactone from Warburgia salutaris. Phytochemistry 1999; 51: 435-8. http://dx.doi.org/10.1016/S0031-9422(98)00753-5 DOI: https://doi.org/10.1016/S0031-9422(98)00753-5
Asakawa Y, Toyota M, Oiso Y, Braggins JE. Occurrence of polygodial and 1-(2,4,6-trimethoxyphenyl)-but-2-en-1-one from some ferns and liverworts: Role of pungent components in bryophytes and pteridophytes evolution. Chem Pharm Bull 2001; 49: 1380-1. http://dx.doi.org/10.1248/cpb.49.1380 DOI: https://doi.org/10.1248/cpb.49.1380
Cortes MM, Oyarzun LM. Tadeonal and isotadeonal from Drimys winteri. Fitoterapia 1981; 52: 33-5.
Fujita KI, Kubo I. Multifunctional action of antifungal polygodial against Saccharomyces cerevisiae: Involvement of pyrrole formation on cell surface in antifungal action. Bioorg Med Chem 2005; 13: 6742-7. http://dx.doi.org/10.1016/j.bmc.2005.07.023 DOI: https://doi.org/10.1016/j.bmc.2005.07.023
Bastos JK, Kaplan MAC, Gottlieb OR. Drimane-Type Sesquiterpenoids as Chemosystematic Markers of Canellaceae. J Brazil Chem Soc 1999; 10. DOI: https://doi.org/10.1590/S0103-50531999000200011
Derita MG, Leiva ML, Zacchino SA. Influence of plant part, season of collection and content of the main active constituent, on the antifungal properties of Polygonum acuminatum Kunth. J Ethnopharmacol 2009; 124: 377-83. http://dx.doi.org/10.1016/j.jep.2009.05.029 DOI: https://doi.org/10.1016/j.jep.2009.05.029
Taniguchi M, Adachi T, Oi S, Kimura A, Katsumara S, Isoe S, et al. Structure-Activity Relationship of the Warburgia Sesquiterpene Dialdehydes. Agr Biol Chem Tokyo 1984; 48: 73-8. http://dx.doi.org/10.1271/bbb1961.48.73 DOI: https://doi.org/10.1271/bbb1961.48.73
Lunde CS, Kubo I. Effect of Polygodial on the Mitochondrial ATPase of Saccharomyces cerevisiae. Antimicrob Agents Chemother 2000; 44: 1943-53. http://dx.doi.org/10.1128/AAC.44.7.1943-1953.2000 DOI: https://doi.org/10.1128/AAC.44.7.1943-1953.2000
Song JH, Yang TC, Chang KW, Han SK, Yi HK, Jeon JG. In vitro effects of a fraction separated from Polygonum cuspidatum root on the viability, in suspension and biofilms, and biofilm formation of mutans streptococci. J Ethnopharmacol 2007; 112: 419-25. http://dx.doi.org/10.1016/j.jep.2007.03.036 DOI: https://doi.org/10.1016/j.jep.2007.03.036
Cowan MM. Plant products as antimicrobial agents. Clin Microbiol Rev 1999; 12: 564-82. DOI: https://doi.org/10.1128/CMR.12.4.564
Smith JE, Tucker D, Watson K, Jones GL. Identification of antibacterial constituents from the indigenous Australian medicinal plant Eremophila duttonii F. Muell. (Myoporaceae). J Ethnopharmacol 2007; 112: 386-93. http://dx.doi.org/10.1016/j.jep.2007.03.031 10 DOI: https://doi.org/10.1016/j.jep.2007.03.031
Sandasi M, Leonard CM, van Vuuren SF, Viljoen AM. Peppermint (Mentha piperita) inhibits microbial biofilms in vitro. S Afr J Bot 2011; 77: 80-5. http://dx.doi.org/10.1016/j.sajb.2010.05.011 DOI: https://doi.org/10.1016/j.sajb.2010.05.011
Gilabert M, Ramos AN, Schiavone MM, Arena ME, Bardón A. Bioactive sesqui- and diterpenoids from the argentine liverwort Porella chilensis. J Nat Prod 2011; 74: 574-9. http://dx.doi.org/10.1021/np100472d DOI: https://doi.org/10.1021/np100472d
Anke H, Stern O. Comparison of the antimicrobial and cytotoxic activities of twenty unsaturated sesquiterpene dialdehydes from plants and mushrooms. Planta Med 1991; 57: 344-6. http://dx.doi.org/10.1055/s-2006-960114 DOI: https://doi.org/10.1055/s-2006-960114
Eneroth A, Ahrne S, Molin G. Contamination routes of Gramnegative spoilage bacteria in the production of pasteurised milk, evaluated by randomly amplified polymorphic DNA (RAPD). International Dairy Journal 2000; 10: 325-31. http://dx.doi.org/10.1016/S0958-6946(00)00055-8 DOI: https://doi.org/10.1016/S0958-6946(00)00055-8
Downloads
Published
Issue
Section
License
Copyright (c) 2014 Global Journal of Agricultural Innovation, Research & Development

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All the published articles are licensed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.


