Regional Groundwater Flow Modeling of the Chalk Aquifer of Beauvais, Paris Basin, North of France

Authors

  • Adel Zghibi Faculty of Sciences of Tunis, 2092 Tunis El Manar, Tunisia
  • Lahcen Zouhri LaSalle Beauvais Polytechnic Institute, 19 Rue Pierre Waguet, 60026 Beauvais, France
  • Jamila Tarhouni Carthage University, 43 Avenue Charles Nicolle, Mahrajène, 1082, Tunisia
  • Pascale Lutz HydrISE, Geosciences Department, LaSalle Beauvais Polytechnic Institute, 19 Rue Pierre Waguet, 60026 Beauvais, France

DOI:

https://doi.org/10.15377/2409-5710.2014.01.02.2

Keywords:

Beauvais, chalk aquifer, modflow-2000, groundwater flow model, sensitivity analysis, recharge.

Abstract

In this paper, a regional model to assess groundwater resources of the shallow groundwater system of Beauvais in the North of France has been satisfactorily completed using geophysical surveys and numerical modeling using MODFLOW-2000. A three-dimensional flow model has been developed for this aquifer using a large amount of available geological and hydrological data. The numerical flow model was calibrated and validated with datasets during 1998–2010. The calibration was done both by the automated parameter PEST and by the trial and error process. The main objective is to quantify the components of the groundwater mass balance, to estimate the hydraulic conductivity distribution and to characterize the hydrologic system. Furthermore, MODFLOW model was used to estimate the recharge, discharge, base flow and water Table fluctuation. Numerical simulations indicate that the Canada lake, located in the Therain valley, acts as a most discharge area for regional groundwater flow. Groundwater inflow from the recharge from Beauvais plateau which is mainly due to precipitation supplies the aquifer with most of its water. Following the calibration process, a sensitivity analysis was carried out. The results show that the aquifer exhibits the highest sensibility to the recharge parameters changes and hydraulic conductivity. The impact of the changes for both these hydraulic parameters appears to differ from large decrease to large increase in total groundwater discharge. The delicate shifts in the groundwater systems, which cause the changes in the recharge and discharge, clearly show the need for hydrological modeling.

Downloads

Download data is not yet available.

Author Biographies

  • Adel Zghibi, Faculty of Sciences of Tunis, 2092 Tunis El Manar, Tunisia
    Department of Geology
  • Lahcen Zouhri, LaSalle Beauvais Polytechnic Institute, 19 Rue Pierre Waguet, 60026 Beauvais, France
    HydrISE, Geosciences Department
  • Jamila Tarhouni, Carthage University, 43 Avenue Charles Nicolle, Mahrajène, 1082, Tunisia
    Water Sciences and Techniques Laboratory, National Agronomic Institute of Tunisia

References

Carroll RWH, Pohll GM, Earman S, Hershey RL. A comparison of groundwater fluxes computed with MODFLOW and a mixing model using deuterium: Application to the eastern Nevada Test Site and vicinity. J of Hydrology 2008; 361: 371- 385. http://dx.doi.org/10.1016/j.jhydrol.2008.08.005 DOI: https://doi.org/10.1016/j.jhydrol.2008.08.005

San Juan C, Kolm KE. Conceptualization characterization and numerical modeling of the Jackson Hole alluvial aquifer using ARC/INFO and MODFLOW. Engineering Geology 1996; 42: 119-137. http://dx.doi.org/10.1016/0013-7952(95)00073-9 DOI: https://doi.org/10.1016/0013-7952(95)00073-9

Gelhar LW. Stochastic Subsurface Hydrology. Prentice Hall. Englewood Cliffs 1993.

Regli C, Rauber M, Huggenberger P. Analysis of aquifer heterogeneity within a well capture zone, comparison of model data with field experiments: a case study from the river Wiese. Switzerland. Aquat Sci 2003; 65: 111-128. DOI: https://doi.org/10.1007/s00027-003-0645-x

Chenini I, Ben Mammou A. Groundwater recharge study in arid region: An approach using GIS techniques and numerical modeling, Computers and Geosciences 2010; 36: 801-817. http://dx.doi.org/10.1016/j.cageo.2009.06.014 DOI: https://doi.org/10.1016/j.cageo.2009.06.014

McDonald MC, Harbaugh AW. A modular three-dimensional finite-difference ground-water flow model. Techniques of Water-Resources Investigations of the USGS 1988; 6: 400.

Reeve AS, Warzocha J, Glaser PH, Siegel DI. Regional ground-water flow modeling of the Glacial Lake Agassiz Peatlands, Minnesota. J of Hydrology 2001; 243: 91-100. http://dx.doi.org/10.1016/S0022-1694(00)00402-9 DOI: https://doi.org/10.1016/S0022-1694(00)00402-9

Zghibi A, Zouhri L, Tarhouni J. Groundwater modelling and marine intrusion in the semi-arid systems (Cap-Bon, Tunisia). Hydrol Process 2011; 25: 1822-1836. http://dx.doi.org/10.1002/hyp.7948 DOI: https://doi.org/10.1002/hyp.7948

Chen X, Huang Y, Ling M, Hu Q, Liu B. Numerical modeling groundwater recharge and its implication in water cycles of two interdunal valleys in the Sand Hills of Nebraska. Physics and Chemistry of the Earth 2012; 53-54: 10-18. http://dx.doi.org/10.1016/j.pce.2011.08.022 DOI: https://doi.org/10.1016/j.pce.2011.08.022

Batelaan O, De Smedt F, Triest L. Regional groundwater discharge: phreatophyte mapping, groundwater modelling and impact analysis of land-use change. J of Hydrology 2003; 275: 86-108. http://dx.doi.org/10.1016/S0022-1694(03)00018-0 DOI: https://doi.org/10.1016/S0022-1694(03)00018-0

Price M, Low RG, McCann C. Mechanisms of water storage and flow in the unsaturated zone of the Chalk aquifer. J Hydrol 2000; 233: 54-71. http://dx.doi.org/10.1016/S0022-1694(00)00222-5 DOI: https://doi.org/10.1016/S0022-1694(00)00222-5

Belhanafi L, Roussel P, Vilmus T. La plaine de canada « Beauvais (Oise) » : Projet d’aménagement d’une base de loisirs; Modélisation hydrodynamique en vue de la protection du champ captant. Bureau de recherches géologiques et minières. Service géologique national. N° Rapport 1993 ; R36656 Paris 4S/93.

Crampon N, Roux JC, Bracq P. Hydrogéologie de la craie en France. Hydrogéologie 1993; 2: 81-123.

Korkmaz S, Ledoux E, Önder H. Application of the coupled model to the Somme river basin. J Hydrol 2009; 366: 21-34. http://dx.doi.org/10.1016/j.jhydrol.2008.12.008 DOI: https://doi.org/10.1016/j.jhydrol.2008.12.008

Mahler BJ, Valdes D, Musgrove M, Massei N. Nutrient dynamics as indicators of karst processes: Comparison of the Chalk aquifer (Normandy, France) and the Edwards aquifer (Texas, U.S.A.). J Contam Hydrol 2008; 98: 36-49. http://dx.doi.org/10.1016/j.jconhyd.2008.02.006 DOI: https://doi.org/10.1016/j.jconhyd.2008.02.006

Zouhri L, Lutz P. A comparison of peak and plate electrodes in electrical resistivity tomography: application to the chalky groundwater of the Beauvais aquifer (northern part of the Paris basin, France). Hydrol Process 2010; 24: 3040-3052. http://dx.doi.org/10.1002/hyp.7719 DOI: https://doi.org/10.1002/hyp.7719

Archie GE. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME 1942; 146: 54-67. http://dx.doi.org/10.2118/942054-G DOI: https://doi.org/10.2118/942054-G

Winsauer WO, Shearin HM, Masson PH, Williams M. Resistivity of brine-saturated sands in relation to pore geometry. AAPG Bull 1952; 36: 253-277. DOI: https://doi.org/10.1306/3D9343F4-16B1-11D7-8645000102C1865D

Kerrou J, Renard P, Tarhouni J. Status of the Korba groundwater resources (Tunisia): observations and threedimensional modelling of seawater intrusion. Hydrogeol J 2010; 18(5): 1173-1190. http://dx.doi.org/10.1007/s10040-010-0573-5 DOI: https://doi.org/10.1007/s10040-010-0573-5

Thornthwaite CW. An approach toward a rational classification of climate. Geographic Review 1948; 38: 55-94. http://dx.doi.org/10.2307/210739 DOI: https://doi.org/10.2307/210739

Thornthwaite CW, Mather JR. Instructions and tables for computing the potential evapotraspiration and the water balance. In: Publications Climatology. Laboratory of Climatology, Drexel Institute of Technology, Centerton, New Jersey. USA 1957; 10: 183-311.

El Yaouti F, El Mandour A, Khattach D, Kaufmann O. Modelling groundwater flow and advective contaminant transport in the Bou-Areg unconfined aquifer (NE Morocco). J of Hydro-environment Research 2008; 2: 192-209. http://dx.doi.org/10.1016/j.jher.2008.08.003 DOI: https://doi.org/10.1016/j.jher.2008.08.003

Harbaugh AW, Banta ER, Hill MC, McDonald MG. MODFLOW- 2000. The U.S. Geological Survey Modular Ground-Water Model e User Guide to Modularization Concepts and the Groundwater Flow Process. U.S. Geological Survey, Water-Resources Investigations Report 2000; 92: 121. DOI: https://doi.org/10.3133/ofr200092

Anderson MP, Woessner WW. Applied Groundwater Modeling: Simulation of Flow and Advective Transport Academic Press In San Diego California 1992.

Poeter EP, Hill MC. Documentation of UCODE, a computer code for universal inverse modeling. US. Geological Survey Water-Resources Investigations Report 1998; 98-4080: 116.

Hill MC, Banta ER, Harbaugh AW, Anderman ER. MODFLOW- 2000. The US. Geological Survey Modular Ground-Water Model e User Guide to the Observation, Sensitivity, and Parameter-estimation Processes and Three Post-processing Programs. US Geological Survey. Water- Resources Investigations Report 2000; 00-184: 210. DOI: https://doi.org/10.3133/ofr00184

Doherty JL. PEST: Model Independent Parameter Estimation. User Manual. 4th edn Watermark Numerical Computing Brisbane Australia 2000.

Zimmerman DA, Marsily GD, Gotway CA, Marietta MG, Axness CL, Beauheim RL, Bras RL, Carrera J, Dagan G, Davies PB, Gallegos DP, Galli A, Gomez-Hernandez J, Grindrod P, Gutjahr AL, Kitanidis PK, Lavenue AM, McLaughlin D, Neuman SP, Rama-Rao BS, Ravenne C, Rubin Y. A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow. Water Resources Research 1998; 34(6): 1373-1413. http://dx.doi.org/10.1029/98WR00003 DOI: https://doi.org/10.1029/98WR00003

Grapes TR, Bradley C, Petts GE. Hydrodynamics of floodplain wetlands in a chalk catchment: The River Lambourn. UK. J Hydrol 2006; 320: 324-341. http://dx.doi.org/10.1016/j.jhydrol.2005.07.028 DOI: https://doi.org/10.1016/j.jhydrol.2005.07.028

Mansour MM, Hughes AG. Application of Numerical Modelling to Investigate Recharge to the Chalk Aquifer Beneath Thick Till Deposits in East Anglia. Groundwater systems and water quality programme internal report IR/04/127. Keyworth Nottingham British Geological Survey 2004.

Barth C, Krause P, Boyle DP, Markstrom S. Hydrological modeling of a groundwater dominated watershed using a loosely coupled modeling approach. International Congress on Modelling and Simulation. Modelling and Simulation Society of Australia and New Zealand Inc 2007; 601-607.

Yu Z, Schwartz FW. Automated calibration applied to watershedscale flow simulations. Hydrol Process 1999; 13: 191-209. http://dx.doi.org/10.1002/(SICI)1099-1085(19990215)13:2<191::AID-HYP706>3.0.CO;2-N DOI: https://doi.org/10.1002/(SICI)1099-1085(19990215)13:2<191::AID-HYP706>3.0.CO;2-N

Downloads

Published

2015-01-15

Issue

Section

Articles

How to Cite

1.
Regional Groundwater Flow Modeling of the Chalk Aquifer of Beauvais, Paris Basin, North of France. Glob. J. Earth Sci. Eng. [Internet]. 2015 Jan. 15 [cited 2026 Feb. 13];1(2):57-70. Available from: https://avantipublishers.com/index.php/gjese/article/view/208

Similar Articles

11-20 of 39

You may also start an advanced similarity search for this article.