Interdisciplinary Synthesis in Architecture: A Comparative Study of Technological Innovation and Cultural Agency
Abstract - 17
PDF

Keywords

Materiality
Design education
Cultural transformation
Technological innovation
Societal role of architecture
Interdisciplinary architecture

Categories

How to Cite

1.
Das TK, Dutta K. Interdisciplinary Synthesis in Architecture: A Comparative Study of Technological Innovation and Cultural Agency. Int. J. Archit. Eng. Technol. [Internet]. 2025 Oct. 22 [cited 2025 Oct. 25];12:171-85. Available from: https://avantipublishers.com/index.php/ijaet/article/view/1673

Abstract

In the evolving landscape of modern and contemporary architecture, the convergence of art, science, and technology has redefined traditional paradigms, challenged perceptions of space, and pushed the boundaries of structural innovation. This paper investigates how influential architects have integrated technological and material innovations to reshape both the practice and societal role of architecture. Adopting a comparative case study methodology, it examines the works of selected architectural masters whose approaches exemplify distinct modes of interdisciplinary engagement across art, technology, and culture. The analysis identifies three recurring features: the reconfiguration of authorship through collaboration, the emergence of novel spatial typologies enabled by digital design and advanced materials, and the repositioning of architecture as a mediator of societal and cultural change. By synthesizing these findings, the study advances a framework arguing that interdisciplinary design practices are not only transforming architectural production but also reshaping its broader cultural agency.

https://doi.org/10.15377/2409-9821.2025.12.11
PDF

References

Scheurer F, Stehling H. Lost in parameter space? Archit Des. 2011; 81: 70-9. https://doi.org/10.1002/ad.1271

Mallgrave HF. The architect's brain: neuroscience, creativity and architecture. UK: Wiley-Blackwell; 2010. https://doi.org/10.1002/9781444317275

Von Meiss P. Elements of architecture. New York: Routledge; 2011. https://doi.org/10.4324/9781315024691

Gudkova TV, Gudkov AA. Spatial modernist architectural artistic concepts. IOP Conf Ser Mater Sci Eng. 2017; 262: 012152. https://doi.org/10.1088/1757-899X/262/1/012152

Sterken S. Music as an art of space: interactions between music and architecture in the work of Iannis Xenakis. In: Resonance: essays on the intersection of music and architecture. 2007. p. 21-51.

Monteiro MR, Kong MSM, Neto MJP. Time and space. London: CRC Press; 2023. https://doi.org/10.1201/9781003260554

Leach N, editor. Architecture and revolution. London: Routledge; 1999. https://doi.org/10.4324/9780203208335

Schneider B. Daniel Libeskind: Jewish Museum Berlin: between the lines. Munich: Prestel; 1999.

Polano S, Calatrava S. Santiago Calatrava: complete works. Germany: Gingko; 1996.

Calatrava S, Kiser K. Santiago Calatrava: the architect's studio. Stockholm: Arvinius Förlag; 2004.

Kent C. Santiago Calatrava: Milwaukee Art Museum Quadracci Pavilion. New York: Rizzoli; 2005.

Gosciniak M, Januszkiewicz K. Architecture inspired by nature: human body in Santiago Calatrava's works. Sophisticated approach to architectural design. IOP Conf Ser Mater Sci Eng. 2019; 471: 082041. https://doi.org/10.1088/1757-899X/471/8/082041

Allen E, Zalewski W. Form and forces: designing efficient, expressive structures. Germany: Wiley; 2012.

Forsyth A. In praise of Zaha: women, partnership, and the star system in architecture. J Archit Educ. 2006; 60(2): 63-5. https://doi.org/10.1111/j.1531-314X.2006.00082.x

Woods L. Drawn into space: Zaha Hadid. Archit Des. 2008; 78(4): 28-35. https://doi.org/10.1002/ad.702

Schumacher P. Tectonism in architecture, design and fashion: innovations in digital fabrication as stylistic drivers. Archit Des. 2017; 87(6): 106-13. https://doi.org/10.1002/ad.2245

Gilbert-Rolfe J, Gehry F. Frank Gehry: the city and music. England: Routledge; 2002.

Hartoonian G. Frank Gehry: roofing, wrapping, and wrapping the roof. J Archit. 2002; 7(1): 1-31. https://doi.org/10.1080/13602360110114759

Goldberger P. Building art: the life and work of Frank Gehry. New York: Vintage; 2015.

Sikiaridi E. The architectures of Iannis Xenakis. Technoetic Arts. 2003; 1(3): 201-7. https://doi.org/10.1386/tear.1.3.201/1

Clarke J. Iannis Xenakis and the Philips Pavilion. J Archit. 2012; 17(2): 213-29. https://doi.org/10.1080/13602365.2012.678641

Xenakis I. Formalized music: thought and mathematics in composition. UK: Pendragon Press; 1992.

Turnbull J. Toyo Ito: forces of nature. United States: Princeton Architectural Press; 2012.

Mehta G, MacDonald D. New Japan architecture: recent works by the world's leading architects. Tuttle Publishing; 2012.

Tamari T. Metabolism: utopian urbanism and the Japanese modern architecture movement. Theory Cult Soc. 2014; 31: 201-25. https://doi.org/10.1177/0263276414547777

Jencks C. Architecture becomes music. Archit Rev. 2013; 233: 91-108.

Jencks C, Kropf K. Theories and manifestoes of contemporary architecture. New Jersey: Wiley; 2006.

Ulusoy M, Kuyrukcu EY. The meaning and importance of the traditional architecture in architecture education; Gömen winter school model. Procedia Soc Behav Sci. 2012; 47: 2120-6. https://doi.org/10.1016/j.sbspro.2012.06.960

Mironov AV. The philosophy of architecture: Le Corbusier's creativity. Moscow: Makspress; 2012.

Brownell B. Material strategies: innovative applications in architecture. Princeton Architectural Press; 2013.

Hilditch T, de Souza T, Hodgson PD. Properties and automotive applications of advanced high-strength steels (AHSS). In: Welding and joining of advanced high strength steels (AHSS). Cambridge: Woodhead Publishing; 2015. p. 9-28. https://doi.org/10.1016/B978-0-85709-436-0.00002-3

Roy TK, Bhattacharya B, Ghosh C, Ajmani SK. Advanced high strength steel. Vol. 1. Springer; 2018. https://doi.org/10.1007/978-981-10-7892-7

Raabe D, Sun B, Da Silva AK, Gault B, Yen HW, Sedighiani K, et al. Current challenges and opportunities in microstructure-related properties of advanced high-strength steels. Metall Mater Trans A. 2020; 51: 5517-86. https://doi.org/10.1007/s11661-020-05947-2

Butuc MC, Vincze G, Santos R, Pereira A, Santos AD, Amaral RL, et al. Formability of third generation advanced high strength steel: experimental and theoretical approach. Int J Mech Sci. 2024; 281: 109559. https://doi.org/10.1016/j.ijmecsci.2024.109559

Li J, Zhan D, Jiang Z, Zhang H, Yang Y, Zhang Y. Progress on improving strength-toughness of ultra-high strength martensitic steels for aerospace applications: a review. J Mater Res Technol. 2023; 23: 172-90. https://doi.org/10.1016/j.jmrt.2022.12.177

Resplendino J, Toulemonde F. Designing and building with UHPFRC. John Wiley & Sons; 2013.

Zheng H, Zhang W, Li B, Zhu J, Wang C, Song G, et al. Recent advances of interphases in carbon fiber-reinforced polymer composites: a review. Compos B Eng. 2022; 233: 109639. https://doi.org/10.1016/j.compositesb.2022.109639

Afroughsabet V, Biolzi L, Ozbakkaloglu T. High-performance fiber-reinforced concrete: a review. J Mater Sci. 2016; 51: 6517-51. https://doi.org/10.1007/s10853-016-9917-4

Tran NT, Nguyen DL, Vu QA, Kim DJ, Ngo TT. Dynamic shear response of ultra-high-performance fiber-reinforced concretes under impact loading. Structures. 2022; 41: 724-36. https://doi.org/10.1016/j.istruc.2022.05.044

Jayan JS, Appukuttan S, Wilson R, Joseph K, George G, Oksman K. An introduction to fiber reinforced composite materials. In: Fiber reinforced composites. Cambridge: Woodhead Publishing; 2021. p. 1-24. https://doi.org/10.1016/B978-0-12-821090-1.00025-9

Morampudi P, Namala KK, Gajjela YK, Barath M, Prudhvi G. Review on glass fiber reinforced polymer composites. Mater Today Proc. 2021; 43: 314-9. https://doi.org/10.1016/j.matpr.2020.11.669

Praveena BA. A comprehensive review of emerging additive manufacturing (3D printing technology): methods, materials, applications, challenges, trends and future potential. Mater Today Proc. 2022; 52: 1309-13. https://doi.org/10.1016/j.matpr.2021.11.059

Bhatia A, Sehgal AK. Additive manufacturing materials, methods and applications: a review. Mater Today Proc. 2023; 81: 1060-7. https://doi.org/10.1016/j.matpr.2021.04.379

López JC, Salcedo-Galera M, Ródenas-López MA. Architectural graphics: volume 2 – graphics for knowledge and production. Switzerland: Springer International Publishing; 2022. https://doi.org/10.1007/978-3-031-04703-9

Block P, Knippers J, Mitra NJ, Wang W. Advances in architectural geometry. Springer; 2014. https://doi.org/10.1007/978-3-319-11418-7

Fischer T, Wortmann T. Algebraic analysis and reconstruction of the Philips Pavilion's hyperbolic paraboloid surfaces. Int J Archit Comput. 2022; 20: 61-75. https://doi.org/10.1177/14780771221082253

Eastman C, Teicholz P, Sacks R, Liston K. BIM handbook: a guide to building information modeling for owners, managers, designers, engineers and contractors. John Wiley & Sons; 2011.

Borrmann A, König M, Koch C, Beetz J, editors. Building information modeling. Switzerland: Springer International Publishing; 2018. https://doi.org/10.1007/978-3-319-92862-3

Soni ML, Bogner FK. Finite element vibration analysis of damped structures. AIAA J. 1982; 20(5): 700-7. https://doi.org/10.2514/3.51127

Vergauwen A, De Laet L, De Temmerman N. Computational modelling methods for pliable structures based on curved-line folding. Comput Aided Des. 2017; 83: 51-63. https://doi.org/10.1016/j.cad.2016.10.002

Ereiz S, Duvnjak I, Jiménez-Alonso JF. Review of finite element model updating methods for structural applications. Structures. 2022; 41: 684-723. https://doi.org/10.1016/j.istruc.2022.05.041

Kensek K. Visual programming for building information modelling: energy and shading analysis case studies. J Green Build. 2015; 10(4): 28-43. https://doi.org/10.3992/jgb.10.4.28

Rocha G, Mateus L. Using dynamo for automatic reconstruction of BIM elements from point clouds. Appl Sci. 2024; 14(10): 4078. https://doi.org/10.3390/app14104078

Young JE. Daniel Libeskind's Jewish Museum in Berlin: the uncanny arts of memorial architecture. Jewish Soc Stud. 2000; 6(2): 1-23. https://doi.org/10.2979/JSS.2000.6.2.1

Patterson M. Contemporary museum architecture and design. UK: Routledge; 2020.

Shelden D. Networked space. Archit Des. 2013; 83: 36-41. https://doi.org/10.1002/ad.1551

Naddaf MS, Baper SY. The role of double-skin facade configurations in optimizing building energy performance in Erbil city. Sci Rep. 2023; 13: 8394. https://doi.org/10.1038/s41598-023-35555-0

Kipnis J. Perfect acts of architecture. New York: Museum of Modern Art; 2001.

Patterson M. Architecture as performance art: evaluating "iconic power" in the development of two museums. Am J Cult Sociol. 2020; 8: 158-90. https://doi.org/10.1057/s41290-018-00067-2

Dogan F, Nersessian NJ. Conceptual diagrams in creative architectural practice: the case of Daniel Libeskind's Jewish Museum. Archit Res Q. 2012; 16(1): 15-27. https://doi.org/10.1017/S1359135512000255

Bechthold M, Weaver JC. Materials science and architecture. Nat Rev Mater. 2017; 2(12): 1-9. https://doi.org/10.1038/natrevmats.2017.82

Singh V, Patra S, Murugan NA, Toncu DC, Tiwari A. Recent trends in computational tools and data-driven modeling for advanced materials. Mater Adv. 2022; 3(10): 4069-87. https://doi.org/10.1039/D2MA00067A

Caetano I, Leitão A. Architecture meets computation: an overview of the evolution of computational design approaches in architecture. Archit Sci Rev. 2020; 63(2): 165-74. https://doi.org/10.1080/00038628.2019.1680524

Oktan S, Vural S. Integrating computational fabrication methods with architectural education. J Comput Des. 2022; 3(2): 111-34. https://doi.org/10.53710/jcode.1149803

Gerber DJ, Khashe S, Smith IF. Surveying the evolution of computing in architecture, engineering, and construction education. J Comput Civ Eng. 2015; 29(5): 04014060. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000361

Gucyeter B. The place of sustainability in architectural education: discussion and suggestions. Athens J Archit. 2016; 2(3): 237-56. https://doi.org/10.30958/aja.2-3-4

Nervi PL. Aesthetics and technology in building: the twenty-first-century edition. Urbana: University of Illinois Press; 2018. https://doi.org/10.5406/j.ctv80c9j9

Butt AN, Dimitrijevi B. Multidisciplinary and transdisciplinary collaboration in nature-based design of sustainable architecture and urbanism. Sustainability. 2022; 14: 10339. https://doi.org/10.3390/su141610339

Gruenewald DA. Foundations of place: a multidisciplinary framework for place-conscious education. Am Educ Res J. 2003; 40(3): 619-54. https://doi.org/10.3102/00028312040003619

Ardoin NM. Toward an interdisciplinary understanding of place: lessons for environmental education. Can J Environ Educ. 2006; 11(1): 112-26.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Tapashi K. Das, Kishore Dutta

Downloads

Download data is not yet available.