Rocking Response of the Rigid Block Under Rectangular Pulse Excitation: A Comparison between ODE and Optimization-Based Solvers
DOI:
https://doi.org/10.15377/2409-5761.2021.08.8Keywords:
Rocking, Rigid block, ODE solver, Mathematical programming, Differential equation of motionAbstract
In this paper, the response of the rigid block under rectangular pulse excitation is investigated using two different modeling approaches and solvers. The first approach relies on the numerical integration of the differential equation of motion. The second approach is based on the formulation of the dynamic problem in terms of a special class of mathematical programming problem that is the linear complementarity problem. A validation study is carried out comparing the solutions given by the proposed formulation with the ones given by the numerical integration of the differential equation of motion obtained from ODE solvers available in MATLAB®. Potentialities and limitations of the mathematical programming formulation are discussed in terms of energy dissipation and restitution coefficient at impacts and in terms of solution times.
Downloads
References
Lagomarsino S. Seismic assessment of rocking masonry structures. Bull Earthq Eng 2015;13:97-128. https://doi.org/10.1007/s10518-014-9609-x. DOI: https://doi.org/10.1007/s10518-014-9609-x
Makris N, Roussos Y. Rocking Response and Overturning of Equipment Under Horizontal Pulse-Type Motions. Pacific Earthquakes, Eng Res Cent 1998. https://doi.org/10.13140/rg.2.1.1207.0566.
Makris N, Zhang J. Rocking Response and Overturning of Anchored Equipment under Seismic Excitations. Pacific Earthq Eng Res Cent 1999:1-82.
Spanos PD, Koh A-S. Rocking of rigid blocks due to harmonic shaking. J Eng Mech 1984;110:1627-42. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:11(1627). DOI: https://doi.org/10.1061/(ASCE)0733-9399(1984)110:11(1627)
Psycharis IN, Jennings PC. Rocking of slender rigid bodies allowed to uplift. Earthq Eng & Struct Dyn 1983;11:57-76. https://doi.org/10.1002/eqe.4290110106. DOI: https://doi.org/10.1002/eqe.4290110106
Ishiyama Y. Motions of rigid bodies and criteria for overturning by earthquake excitations. Earthq Eng & Struct Dyn 1982;10:635-50. https://doi.org/10.1002/eqe.4290100502. DOI: https://doi.org/10.1002/eqe.4290100502
Aslam M, Fodden WG, Scalise DT. Earthquake rocking response of rigid bodies. J Struct Div ASCE 1980;106:377-92. DOI: https://doi.org/10.1061/JSDEAG.0005363
Malomo D, Mehrotra A, DeJong MJ. Distinct element modeling of the dynamic response of a rocking podium tested on a shake table. Earthq Eng Struct Dyn 2021;50:1469-75. https://doi.org/10.1002/eqe.3404. DOI: https://doi.org/10.1002/eqe.3404
Grillanda N, Chiozzi A, Milani G, Tralli A. Tilting plane tests for the ultimate shear capacity evaluation of perforated dry joint masonry panels. Part II: Numerical analyses. Eng Struct 2021;228. https://doi.org/10.1016/j.engstruct.2020.111460. DOI: https://doi.org/10.1016/j.engstruct.2020.111460
Giresini L, Solarino F, Paganelli O, Oliveira DV, Froli M. ONE-SIDED rocking analysis of corner mechanisms in masonry structures: Influence of geometry, energy dissipation, boundary conditions. Soil Dyn Earthq Eng 2019;123:357-70. https://doi.org/10.1016/j.soildyn.2019.05.012. DOI: https://doi.org/10.1016/j.soildyn.2019.05.012
Giouvanidis AI, Dong Y. Seismic loss and resilience assessment of single-column rocking bridges. Bull Earthq Eng 2020;18:4481-513. https://doi.org/10.1007/s10518-020-00865-5. DOI: https://doi.org/10.1007/s10518-020-00865-5
Giouvanidis AI, Dimitrakopoulos EG. Rocking amplification and strong-motion duration. Earthq Eng Struct Dyn 2018;47:2094-116. https://doi.org/10.1002/eqe.3058. DOI: https://doi.org/10.1002/eqe.3058
Galassi S, Ruggieri N, Tempesta G. A Novel Numerical Tool for Seismic Vulnerability Analysis of Ruins in Archaeological Sites. Int J Archit Herit 2020;14:1-22. https://doi.org/10.1080/15583058.2018.1492647. DOI: https://doi.org/10.1080/15583058.2018.1492647
Funari MF, Mehrotra A, Lourenço PB. A tool for the rapid seismic assessment of historic masonry structures based on limit analysis optimisation and rocking dynamics. Appl Sci 2021;11:1-22. https://doi.org/10.3390/app11030942. DOI: https://doi.org/10.3390/app11030942
De-Felice G, Malena M. Failure pattern prediction in masonry. J Mech Mater Struct 2019;14:663-82. https://doi.org/10.2140/jomms.2019.14.663. DOI: https://doi.org/10.2140/jomms.2019.14.663
Casapulla C, Giresini L, Lourenço PB. Rocking and kinematic approaches for rigid block analysis of masonry walls: State of the art and recent developments. Buildings 2017;7. https://doi.org/10.3390/buildings7030069. DOI: https://doi.org/10.3390/buildings7030069
Acary V, Brogliato B. Numerical methods for non-smooth dynamical systems. Berlin: Springer; 2008. DOI: https://doi.org/10.1007/978-3-540-75392-6
Jean M. The non-smooth contact dynamics method. Comput Methods Appl Mech Eng 1999;177:235-57. https://doi.org/10.1016/S0045-7825(98)00383-1. DOI: https://doi.org/10.1016/S0045-7825(98)00383-1
Rafiee A, Vinches M, Bohatier C. Modelling and analysis of the Nîmes arena and the Arles aqueduct subjected to a seismic loading, using the Non-Smooth Contact Dynamics method. Eng Struct 2008;30:3457-67. https://doi.org/10.1016/j.engstruct.2008.05.018. DOI: https://doi.org/10.1016/j.engstruct.2008.05.018
Lancioni G, Lenci S, Piattoni Q, Quagliarini E. Dynamics and failure mechanisms of ancient masonry churches subjected to seismic actions by using the NSCD method: The case of the medieval church of S. Maria in Portuno. Eng Struct 2013;56:1527-46. https://doi.org/10.1016/j.engstruct.2013.07.027. DOI: https://doi.org/10.1016/j.engstruct.2013.07.027
Andersen ED, Roos C, Terlaky T. On implementing a primal-dual interior-point method for conic quadratic optimization. Math Program Ser B 2003;95:249-77. https://doi.org/10.1007/s10107-002-0349-3. DOI: https://doi.org/10.1007/s10107-002-0349-3
Tasora A, Anitescu M. A matrix-free cone complementarity approach for solving large-scale, nonsmooth, rigid body dynamics. Comput Methods Appl Mech Eng 2011;200:439-53. https://doi.org/10.1016/j.cma.2010.06.030. DOI: https://doi.org/10.1016/j.cma.2010.06.030
Stewart DE, Trinkle JC. An implicit time-stepping scheme for rigid body dynamics with inelastic collisions and coulomb friction. Int J Numer Methods Eng 1996;39:2673-91. https://doi.org/10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-NME972>3.0.CO;2-I. DOI: https://doi.org/10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-NME972>3.0.CO;2-I
Anitescu M, Potra FA. A time-stepping method for stiff multibody dynamics with contact and friction. Int J Numer Methods Eng 2002;55:753-84. https://doi.org/10.1002/nme.512. DOI: https://doi.org/10.1002/nme.512
Livesley RK. Limit analysis of structures formed from rigid blocks. Int J Numer Methods Eng 1978;12:1853-71. https://doi.org/10.1002/nme.1620121207. DOI: https://doi.org/10.1002/nme.1620121207
Baggio C, Trovalusci P. Limit analysis for no-tension and frictional three-dimensional discrete systems. Mech Struct Mach 1998;26:287-304. https://doi.org/10.1080/08905459708945496. DOI: https://doi.org/10.1080/08905459708945496
Baggio C, Trovalusci P. Collapse behavior of three-dimensional brick-block systems using non-linear programming. Struct Eng Mech 2000;10:181-95. https://doi.org/10.12989/sem.2000.10.2.181. DOI: https://doi.org/10.12989/sem.2000.10.2.181
Cascini L, Gagliardo R, Portioli F. LiABlock_3D: A Software Tool for Collapse Mechanism Analysis of Historic Masonry Structures. Int J Archit Herit 2020;14:75-94. https://doi.org/10.1080/15583058.2018.1509155. DOI: https://doi.org/10.1080/15583058.2018.1509155
Orduña A, Lourenço PB. Three-dimensional limit analysis of rigid blocks assemblages. Part I: Torsion failure on frictional interfaces and limit analysis formulation. Int J Solids Struct 2005;42:5140-60. https://doi.org/10.1016/j.ijsolstr.2005.02.010. DOI: https://doi.org/10.1016/j.ijsolstr.2005.02.010
Orduña A, Lourenço PB. Three-dimensional limit analysis of rigid blocks assemblages. Part II: Load-path following solution procedure and validation. Int J Solids Struct 2005;42:5161-80. https://doi.org/10.1016/j.ijsolstr.2005.02.011. DOI: https://doi.org/10.1016/j.ijsolstr.2005.02.011
Portioli F, Casapulla C, Cascini L. An efficient solution procedure for crushing failure in 3D limit analysis of masonry block structures with non-associative frictional joints. Int J Solids Struct 2015;69-70:252-66. https://doi.org/10.1016/j.ijsolstr.2015.05.025. DOI: https://doi.org/10.1016/j.ijsolstr.2015.05.025
Portioli FPA. Rigid block modeling of historic masonry structures using mathematical programming: a unified formulation for non-linear time history, static pushover, and limit equilibrium analysis. Bull Earthq Eng 2020;18:211-39. https://doi.org/10.1007/s10518-019-00722-0. DOI: https://doi.org/10.1007/s10518-019-00722-0
Fishwick RJ. Limit analysis of rigid block structures—University of Portsmouth, 1996.
Ferris MC, Tin-Loi F. Limit analysis of frictional block assemblies as a mathematical program with complementarity constraints. Int J Mech Sci 2001;43:209-24. https://doi.org/10.1016/S0020-7403(99)00111-3. DOI: https://doi.org/10.1016/S0020-7403(99)00111-3
Krabbenhoft K, Huang J, Da Silva MV, Lyamin AV. Granular contact dynamics with particle elasticity. Granul Matter 2012;14:607-19. https://doi.org/10.1007/s10035-012-0360-1. DOI: https://doi.org/10.1007/s10035-012-0360-1
Lim K-W, Krabbenhoft K, Andrade JE. A contact dynamics approach to the Granular Element Method. Comput Methods Appl Mech Eng 2014;268:557-73. https://doi.org/10.1016/j.cma.2013.10.004. DOI: https://doi.org/10.1016/j.cma.2013.10.004
Portioli F, Cascini L. Contact Dynamics of Masonry Block Structures Using Mathematical Programming. J Earthq Eng 2018;22:94-125. https://doi.org/10.1080/13632469.2016.1217801. DOI: https://doi.org/10.1080/13632469.2016.1217801
Zhang J, Makris N. Rocking response of free-standing blocks under cycloidal pulses. J Eng Mech 2001;127:473-83. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:5(473). DOI: https://doi.org/10.1061/(ASCE)0733-9399(2001)127:5(473)
Downloads
Published
Issue
Section
License
Copyright (c) 2021 R. Gagliardo, F.P.A. Portioli, L. Cascini , R. Landolfo

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All the published articles are licensed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.


