Dynamic Bifurcation Analysis of Incommensurate Fractional-Order Hopfield Neural Networks with Multiple Time Delays

Authors

DOI:

https://doi.org/10.15377/2409-5761.2025.12.11

Keywords:

Stability analysis, Nonlinear dynamics, Dynamic bifurcation, Hopfield neural network, Three nonidentical delays, Fractional-order neural networks, Adams-Bashforth-Moulton method

Abstract

This study extends a traditional neural network model to an asymmetric Hopfield model incorporating triple time delays through a combined qualitative and quantitative analytical approach. The system is first linearized using Taylor series expansion, followed by the determination of bifurcation points in the resulting system of equations containing quadratic transcendental terms. An improved Adams-Bashforth-Moulton predictor-corrector method is employed for discretization analysis. Theoretical findings are validated through three numerical case studies, with further examination of how time delays influence the system’s dynamic behavior.

Downloads

Download data is not yet available.

References

Laskin N. Fractional quantum mechanics. Phys Rev E. 2000; 62(3): 3135. https://doi.org/10.1103/PhysRevE.62.3135 DOI: https://doi.org/10.1103/PhysRevE.62.3135

Goufo EFD, Kumar S, Mugisha SB. Similarities in a fifth-order evolution equation with and with no singular kernel. Chaos Solitons Fractals. 2020; 130: 109467. https://doi.org/10.1016/j.chaos.2019.109467 DOI: https://doi.org/10.1016/j.chaos.2019.109467

Tuan NH, Mohammadi H, Rezapour S. A mathematical model for COVID-19 transmission by using the Caputo fractional derivative. Chaos Solitons Fractals. 2020; 140: 110107. https://doi.org/10.1016/j.chaos.2020.110107 DOI: https://doi.org/10.1016/j.chaos.2020.110107

Koller RC. Applications of fractional calculus to the theory of viscoelasticity. J Appl Mech. 1984; 51(2): 299-307. https://doi.org/10.1115/1.3167616 DOI: https://doi.org/10.1115/1.3167616

Smith H. An introduction to delay differential equations with applications to the life sciences. Germany: Springer; 2011. DOI: https://doi.org/10.1007/978-1-4419-7646-8

Lakshmanan M, Senthilkumar DV. Dynamics of nonlinear time-delay systems. Germany: Springer Science & Business Media; 2011. https://doi.org/10.1007/978-3-642-14938-2 DOI: https://doi.org/10.1007/978-3-642-14938-2

Lainscsek C, Rowat P, Schettino L, Lee D, Song D, Letellier C, et al. Finger tapping movements of Parkinson's disease patients automatically rated using nonlinear delay differential equations. Chaos. 2012; 22(1): 013119. https://doi.org/10.1063/1.3683444 DOI: https://doi.org/10.1063/1.3683444

Lainscsek C, Sejnowski TJ. Electrocardiogram classification using delay differential equations. Chaos. 2013; 23(2): 023132. https://doi.org/10.1063/1.4811544 DOI: https://doi.org/10.1063/1.4811544

Matigon D. Computational engineering in systems and application multiconference. IMACS, IEEE-SMC, France. 1996; 12: 963.

Pakzad MA, Pakzad S. Stability map of fractional order time-delay systems. WSEAS Trans Syst. 2012; 10(11): 541-50.

Bonnet C, Partington JR. Analysis of fractional delay systems of retarded and neutral type. Automatica. 2002; 38(7): 1133-8. https://doi.org/10.1016/S0005-1098(01)00306-5 DOI: https://doi.org/10.1016/S0005-1098(01)00306-5

Hwang C, Cheng YC. A numerical algorithm for stability testing of fractional delay systems. Automatica. 2006; 42(5): 825-31. https://doi.org/10.1016/j.automatica.2006.01.008 DOI: https://doi.org/10.1016/j.automatica.2006.01.008

Bhalekar SB. Stability analysis of a class of fractional delay differential equations. Pramana. 2013; 81(2): 215-24. https://doi.org/10.1007/s12043-013-0569-5 DOI: https://doi.org/10.1007/s12043-013-0569-5

Bhalekar S. Stability and bifurcation analysis of a generalized scalar delay differential equation. Chaos. 2016; 26(8): 084306. https://doi.org/10.1063/1.4958923 DOI: https://doi.org/10.1063/1.4958923

Bhalekar S, Daftardar-Gejji V. Synchronization of different fractional order chaotic systems using active control. Commun Nonlinear Sci Numer Simul. 2010; 15(11): 3536-46. https://doi.org/10.1016/j.cnsns.2009.12.016 DOI: https://doi.org/10.1016/j.cnsns.2009.12.016

Daftardar-Gejji V, Bhalekar S, Gade P. Dynamics of fractional-ordered Chen system with delay. Pramana. 2012; 79: 61-9. https://doi.org/10.1007/s12043-012-0291-8 DOI: https://doi.org/10.1007/s12043-012-0291-8

Bhalekar S. Dynamical analysis of fractional order Uçar prototype delayed system. Signal Image Video Process. 2012; 6: 513-9. https://doi.org/10.1007/s11760-012-0330-4 DOI: https://doi.org/10.1007/s11760-012-0330-4

Bhalekar S, Daftardar-Gejji V, Baleanu D, Magin R. Fractional Bloch equation with delay. Comput Math Appl. 2011; 61(5): 1355-65. https://doi.org/10.1016/j.camwa.2010.12.079 DOI: https://doi.org/10.1016/j.camwa.2010.12.079

Bhalekar S, Daftardar-Gejji V, Baleanu D, Magin R. Generalized fractional order Bloch equation with extended delay. Int J Bifurc Chaos. 2012; 22(4): 1250071. https://doi.org/10.1142/S021812741250071X DOI: https://doi.org/10.1142/S021812741250071X

Shiri B, Shi YG, Baleanu D. The well-posedness of incommensurate FDEs in the space of continuous functions. Symmetry. 2024; 16(8): 1058. https://doi.org/10.3390/sym16081058 DOI: https://doi.org/10.3390/sym16081058

Shiri B. Well-posedness of the mild solutions for incommensurate systems of delay fractional differential equations. Fractal Fract. 2025; 9(2): 60. https://doi.org/10.3390/fractalfract9020060 DOI: https://doi.org/10.3390/fractalfract9020060

Shiri B, Shi YG, Baleanu D. Hyers-Ulam stability of systems of incommensurate fractional differential equations. Authorea Preprints. 2024. https://doi.org/10.22541/au.172926371.14355260/v1 DOI: https://doi.org/10.22541/au.172926371.14355260/v1

Shiri B, Khiabani ED, Baleanu D. Analysis and analytical solution of incommensurate fuzzy fractional nabla difference systems in neural networks. Theor Appl. 2025; 15(4): 610-24. https://doi.org/10.36922/IJOCTA025130067 DOI: https://doi.org/10.36922/IJOCTA025130067

Baleanu D, Shiri B. Generalized fractional differential equations for past dynamic. AIMS Math. 2022; 7(8): 14394-418. https://doi.org/10.3934/math.2022793 DOI: https://doi.org/10.3934/math.2022793

Wang H, Yu Y, Wen G. Stability analysis of fractional-order Hopfield neural networks with time delays. Neural Netw. 2014; 55: 98. https://doi.org/10.1016/j.neunet.2014.03.012 DOI: https://doi.org/10.1016/j.neunet.2014.03.012

Yuan J, Huang C. Quantitative analysis in delayed fractional-order neural networks. Neural Process Lett. 2019; 50: 1631-51. https://doi.org/10.1007/s11063-019-10161-2 DOI: https://doi.org/10.1007/s11063-019-10161-2

Hale JK, Huang WZ. Global geometry of the stable regions for two delay differential equations. J Math Anal Appl. 1993; 178(2): 344-62. https://doi.org/10.1006/jmaa.1993.1312 DOI: https://doi.org/10.1006/jmaa.1993.1312

Bélair J, Campbell SA. Stability and bifurcations of equilibria in a multiple-delayed differential equation. SIAM J Appl Math. 1994; 54(5): 1402-24. https://doi.org/10.1137/S0036139993248853 DOI: https://doi.org/10.1137/S0036139993248853

Li X, Ruan S, Wei J. Stability and bifurcation in delay-differential equations with two delays. J Math Anal Appl. 1999; 236(2): 254-80. https://doi.org/10.1006/jmaa.1999.6418 DOI: https://doi.org/10.1006/jmaa.1999.6418

Qie X, Zang J, Liu S, Shilnikov AL. Synaptic delays shape dynamics and function in multimodal neural motifs. Chaos. 2025; 35(4): 043106. https://doi.org/10.1063/5.0233640 DOI: https://doi.org/10.1063/5.0233640

Tsianos KI, Rabbat MG. The impact of communication delays on distributed consensus algorithms. arXiv preprint arXiv:1207.5839. 2012.

Zhao Y, Paine N, Kim KS, Sentis L. Stability and performance limits of latency-prone distributed feedback controllers. IEEE Trans Ind Electron. 2015; 62(11): 7151-62. https://doi.org/10.1109/TIE.2015.2448513 DOI: https://doi.org/10.1109/TIE.2015.2448513

Li B, Cheng X. Synchronization analysis of coupled fractional-order neural networks with time-varying delays. Math Biosci Eng. 2023; 20: 14846-65. https://doi.org/10.3934/mbe.2023665 DOI: https://doi.org/10.3934/mbe.2023665

Ma Y, Lin Y, Dai Y. Stability and Hopf bifurcation analysis of a fractional-order BAM neural network with two delays under hybrid control. Neural Process Lett. 2024; 56(2): 82. https://doi.org/10.1007/s11063-024-11458-7 DOI: https://doi.org/10.1007/s11063-024-11458-7

Kumar P, Erturk VS, Murillo-Arcila M, Govindaraj V. A new form of L1-predictor-corrector scheme to solve multiple delay-type fractional order systems with the example of a neural network model. Fractals. 2023; 31(4): 2340043. https://doi.org/10.1142/S0218348X23400431 DOI: https://doi.org/10.1142/S0218348X23400431

Sivalingam SM, Kumar P, Trinh H, Govindaraj V. A novel L1-Predictor-Corrector method for the numerical solution of the generalized-Caputo type fractional differential equations. Math Comput Simul. 2024; 220: 462-80. https://doi.org/10.1016/j.matcom.2024.01.017 DOI: https://doi.org/10.1016/j.matcom.2024.01.017

Chauhan RP, Singh R, Kumar A, Thakur NK. Role of prey refuge and fear level in fractional prey-predator model with anti-predator. J Comput Sci. 2024; 81: 102385. https://doi.org/10.1016/j.jocs.2024.102385 DOI: https://doi.org/10.1016/j.jocs.2024.102385

Almuallem NA, Chauhan RP. Effects of quarantine and vaccination on the transmission of Lumpy skin disease: A fractional approach. PLoS One. 2025; 20(7): e0327673. https://doi.org/10.1371/journal.pone.0327673 DOI: https://doi.org/10.1371/journal.pone.0327673

Chauhan RP. Analyzing the memory-based transmission dynamics of coffee berry disease using Caputo derivative. Adv Theory Simul. 2025; e00373. https://doi.org/10.1002/adts.202500373 DOI: https://doi.org/10.1002/adts.202500373

Momani S, Chauhan RP, Kumar S, Hadid S. Analysis of social media addiction model with singular operator. Fractals. 2023; 31(10): 2340097. https://doi.org/10.1142/S0218348X23400972 DOI: https://doi.org/10.1142/S0218348X23400972

Li Z, Jiang W, Zhang Y. Dynamic analysis of fractional-order neural networks with inertia. AIMS Math. 2022; 7(9): 16889-906. https://doi.org/10.3934/math.2022927 DOI: https://doi.org/10.3934/math.2022927

Wang Z, Zhang H. The role of neural inhibition in delayed recurrent neural networks. J Phys. 2006; 55(11): 5674-80.

Podlubny I. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, methods of their solution and some applications. Elsevier; 1998.

Sadabad MK, Akbarfam AJ, Shiri B. A numerical study of eigenvalues and eigenfunctions of fractional Sturm-Liouville problems via Laplace transform. Indian J Pure Appl Math. 2020; 51(3): 857-68. https://doi.org/10.1007/s13226-020-0436-2 DOI: https://doi.org/10.1007/s13226-020-0436-2

Diethelm K, Ford NJ, Freed AD. A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 2002; 29: 3-22. https://doi.org/10.1023/A:1016592219341 DOI: https://doi.org/10.1023/A:1016592219341

Li QY. Modern numerical analysis. Beijing: Higher Education Press; 1995.

Diethelm K, Freed AD. The FracPECE subroutine for the numerical solution of differential equations of fractional order. Forschung Wiss Rechnen. 1998; 1999: 57-71.

Huang C, Mo S, Cao J. Detections of bifurcation in a fractional-order Cohen-Grossberg neural network with multiple delays. Cogn Neurodyn. 2024; 18(3): 1379-96. https://doi.org/10.1007/s11571-023-09934-2 DOI: https://doi.org/10.1007/s11571-023-09934-2

Sun Q, Xiao M, Tao B. Local bifurcation analysis of a fractional-order dynamic model of genetic regulatory networks with delays. Neural Process Lett. 2018; 47: 1285-96. https://doi.org/10.1007/s11063-017-9690-7 DOI: https://doi.org/10.1007/s11063-017-9690-7

Wang H, Huang C, Liu H, Cao J. Detecting bifurcations in a fractional-order neural network with nonidentical delays via Cramer's rule. Chaos Solitons Fractals. 2023; 175: 113896. https://doi.org/10.1016/j.chaos.2023.113896 DOI: https://doi.org/10.1016/j.chaos.2023.113896

Steven H. Nonlinear dynamics and chaos. Beijing: China Machine Press; 2016.

Downloads

Published

2025-12-28

Issue

Section

Articles

How to Cite

Dynamic Bifurcation Analysis of Incommensurate Fractional-Order Hopfield Neural Networks with Multiple Time Delays. (2025). Journal of Advances in Applied & Computational Mathematics, 12, 166-192. https://doi.org/10.15377/2409-5761.2025.12.11

Similar Articles

21-30 of 77

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)