Abstract
In this study, 250 kW, 9 phase, outer rotor types of Permanent Magnet Synchronous Motor (PMSM) are taken into consideration. To optimize the cooling efficiency of the motor, firstly, the motor geometry is obtained, and the e-magnetic model of the geometry is validated with the manufacturer`s data. Secondly, by using the validated e-magnetic model, the cooling system of the motor was analyzed by using the thermal model of the Motor-CAD. The thermal model is also validated with the real-time experiments which are held on an electric bus at constant speed experimentally. For finding the best cooling strategy for the motor, after validation, the effect of the mass flow rate, the type of the cooling refrigerant, the cooling pipe diameter size, and the change of torque are analyzed on the validated model. The results showed us that mass flow rate and torque have a significant effect on winding temperature, and the Taguchi method showed that [mass flow rate (A)=50 l/min, pipe diameter (B) = 17.7 mm, number of turns (C)=20, type of fluid (D)= EGW50/50, torque (E)=2000 Nm] is the best cooling design parameters for the cooling strategy of the considered PMSM.
References
European Commission. EU transport in figures - Statistical pocketbook. 2011. Available from: https://ec.europa.eu- /transport/facts-fundings/statistics/pocketbook-2011_en/ (accessed on 21 February 2021).
Zhang Q, Tan L, Xu G. Evaluating transient performance of servo mechanisms by analysing stator current of PMSM. Mech Syst Signal Process. 2018; 101: 535–48. https://doi.org/10.1016/j.ymssp.2017.09.011
Moosavi SS, Djerdir A, Amirat YA, Khaburi DA. Demagnetization fault diagnosis in permanent magnet synchronous motors: A review of the state-of-the-art. J Magn Magn Mater. 2015; 391: 203–12. https://doi.org/10.1016/j.jmmm.2015.04.062
Staton D, Pickering S, Lampard D. Recent advancement in the thermal design of electric motors. Proceedings of the SMMA 2001 Fall Technical Conference “Emerging Technologies for Electric Motion Industry,” Durham, North Carolina, USA: Oct. 3-5, 2001.
Huang Z, Marquez F, Alakula M, Yuan J. Characterization and application of forced cooling channels for traction motors in HEVs. 2012 XXth International Conference on Electrical Machines, Marseille, France: IEEE; 2012, p. 1212–8. https://doi.org/10.1109/ICElMach.2012.6350030
Kim M-S, Lee K-S, Um S. Numerical investigation and optimization of the thermal performance of a brushless DC motor. Intl J Heat Mass Transf. 2009; 52: 1589–99. https://doi.org/10.1016/j.ijheatmasstransfer.2008.07.040
Lim DH, Kim SC. Thermal performance of oil spray cooling system for in-wheel motor in electric vehicles. Appl Therm Eng. 2014; 63: 577–87. https://doi.org/10.1016/j.applthermaleng.2013.11.057
Zhang Y, Shen Y, Zhang W. Optimized design of the cooling system for and articulated dump truck’s electric drive system, SAE Technical Paper 2010-01-0504, 2010. https://doi.org/10.4271/2010-01-0504
Polikarpova M, Lindh PM, Tapia JA, Pyrhonen JJ. Application of potting material for a 100 kW radial flux PMSM. 2014 International Conference on Electrical Machines (ICEM), Berlin, Germany: IEEE; 2014, p. 2146–51. https://doi.org/10.1109/ICELMACH.2014.6960481
Yang Y, Bilgin B, Kasprzak M, Nalakath S, Sadek H, Preindl M, et al. Thermal management of electric machines. IET Electr Syst Transp. 2017; 7: 104–16. https://doi.org/10.1049/iet-est.2015.0050
Rehman Z, Seong K. Three-D numerical thermal analysis of electric motor with cooling jacket. Energies (Basel). 2018; 11: 1196–1073. https://doi.org/10.3390/en11010092
Cavazzuti M, Gaspari G, Pasquale S, Stalio E. Thermal management of a Formula E electric motor: Analysis and optimization. Appl Therm Eng. 2019; 157: 113733. https://doi.org/10.1016/j.applthermaleng.2019.113733
Zhang Y, Ruan J, Huang T, Yang X, Zhu H, Yang G. Calculation of temperature rise in air-cooled induction Motors through 3-D coupled electromagnetic fluid-dynamical and thermal finite- element analysis. IEEE Trans Magn. 2012; 48: 1047–50. https://doi.org/10.1109/TMAG.2011.2174433
Lundmark ST, Acquaviva A, Bergqvist A. Coupled 3-D thermal and electromagnetic modelling of a liquid-cooled transverse flux traction motor. 2018 XIII International Conference on Electrical Machines (ICEM), Alexandroupoli, Greece: IEEE; 2018, p. 2640–6. https://doi.org/10.1109/ICELMACH.2018.8506835
Aziz R, Atkinson GJ. Thermal model for permanent magnet synchronous machine. Int J Power Electr Drive Sys (IJPEDS). 2017; 8: 1903-12. https://doi.org/10.11591/ijpeds.v8.i4.pp1903-1912
Demetriades GD, Karatsivos E, Agelidis V, Konstantinou G. A real-time thermal model of a permanent-magnet synchronous motor. IEEE Trans Power Electron. 2010; 25: 463–74. https://doi.org/10.1109/TPEL.2009.2027905
Ponomarev P, Polikarpova M, Pyrhonen J. Thermal modeling of directly-oil-cooled permanent magnet synchronous machine. 2012 XXth International Conference on Electrical Machines, Marseille, France: IEEE; 2012, p. 1882–7. https://doi.org/10.1109/ICElMach.2012.6350138
Tikadar A, Johnston D, Kumar N, Joshi Y, Kumar S. Comparison of electro-thermal performance of advanced cooling techniques for electric vehicle motors. Appl Therm Eng. 2020; 183: 116182. https://doi.org/10.1016/j.applthermaleng.2020.116182
Fan J, Zhang C, Wang Z, Dong Y, Nino CE, Tariq AR, et al. Thermal analysis of permanent magnet motor for the electric vehicle application considering driving duty cycle. IEEE Trans Magn. 2010; 46: 2493–6. https://doi.org/10.1109/TMAG.2010.2042043
Fang G, Yuan W, Yan Z, Sun Y, Tang Y. Thermal management integrated with three-dimensional heat pipes for air-cooled permanent magnet synchronous motor. Appl Therm Eng. 2019; 152: 594-604. https://doi.org/10.1016/j.applthermaleng.2019.02.120
Sun Y, Zhang S, Yuan W, Tang Y, Li J, Tang K. Applicability study of the potting material-based thermal management strategy for permanent magnet synchronous motors. Appl Therm Eng. 2019; 149: 1370–8. https://doi.org/10.1016/j.applthermaleng.2018.12.141
Cermak R, Pechanek R. Thermal study of permanent magnet direct drive wheel motor. Proceedings of the 2018 18th International Conference on Mechatronics - Mechatronika, ME 2018, 2018, p. 1–6.
Chaieb M, Ben Hadj N, Kammoun JK, Neji R. Thermal modeling of permanent magnet motor with finite element method. 2014 15th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Hammamet, Tunisia: IEEE; 2014, p. 594–8. https://doi.org/10.1109/STA.2014.7086733
Demetriades GD, Zelaya De La Parra H, Andersson E, Olsson H. A real-time thermal model of a permanent magnet synchronous motor based on geometrical measures. 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece: IEEE; 2008, p. 3061–7. https://doi.org/10.1109/PESC.2008.4592420
Kazan FA, Bilgin O. Simulation of PMSM operating at different speeds and optimization of PI controller parameters. Mehmet Akif Ersoy Üniversitesi Uygulamalı Bilimler Dergisi 2020; 4: 86–105. https://doi.org/10.31200/makuubd.673400
Jebahi R, Aloui H, Ayadi M. One-dimensional lumped-circuit for transient thermal study of an induction electric motor. Int J Electr Comput Eng (IJECE). 2017; 7: 1714-24. https://doi.org/10.11591/ijece.v7i4.pp1714-1724
Kacenka A, Pop A-C, Vintiloiu I, Fodorean D. Lumped parameter thermal modeling of permanent magnet synchronous motor. 2019 Electric Vehicles International Conference (EV), Bucharest, Romania: IEEE; 2019, p. 1–6. https://doi.org/10.1109/EV.2019.8892937
Kahrisangi MG, Isfahani AH, Vaez-Zadeh S, Sebdani MR. Line-start permanent magnet synchronous motors versus induction motors: A comparative study. Front Inf Technol Electron Eng. 2012; 7: 459–66. https://doi.org/10.1007/s11460-012-0217-8
Kefalas TD, Kladas AG. Finite element transient thermal analysis of PMSM for aerospace applications. XXth International Conference on Electrical Machines, Marseille, France: IEEE; 2012, p. 2566–72. https://doi.org/10.1109/ICElMach.2012.6350246
Kefalas TD, Kladas AG. Thermal investigation of permanent-magnet synchronous motor for aerospace applications. IEEE Trans Industr Electr. 2014; 61: 4404–11. https://doi.org/10.1109/TIE.2013.2278521
Kim C, Lee K-S, Yook S-J. Effect of air-gap fans on cooling of windings in a large-capacity, high-speed induction motor. Appl Therm Eng. 2016; 100: 658–67. https://doi.org/10.1016/j.applthermaleng.2016.02.077
Li GJ, Ojeda J, Hoang E, Gabsi M. Thermal-electromagnetic analysis of a fault-tolerant dual-star flux-switching permanent magnet motor for critical applications. IET Electr Power Appl. 2011; 5: 503-13. https://doi.org/10.1049/iet-epa.2010.0250
Malumbres JA, Satrustegui M, Elosegui I, Ramos JC, Martínez-Iturralde M. Analysis of relevant aspects of thermal and hydraulic modeling of electric machines. Application in an open self ventilated machine. Appl Therm Eng. 2015; 75: 277–88. https://doi.org/10.1016/j.applthermaleng.2014.10.012
Meenen J. Electric vehicle team porsche designing a cooling system for the AC24 electric motor. Massachusetts Technology Institute, 2010.
Mutlu Y. Elektriklı araç motorunun sogutma sıstem tasarımı. Yuksek Lisans Tezi. Istanbul Teknik Universitesi; 2011.
Putra N, Ariantara B. Electric motor thermal management system using L-shaped flat heat pipes. Appl Therm Eng. 2017; 126: 1156–63. https://doi.org/10.1016/j.applthermaleng.2017.01.090
Rehman Z, Seong K. Three-D numerical thermal analysis of electric motor with cooling jacket. Energies (Basel). 2018; 11: 92. https://doi.org/10.3390/en11010092
Satrústegui M, Martinez-Iturralde M, Ramos JC, Gonzalez P, Astarbe G, Elosegui I. Design criteria for water cooled systems of induction machines. Appl Therm Eng. 2017; 114: 1018–28. https://doi.org/10.1016/j.applthermaleng.2016.12.031
Staton DA, Popescu M, Hawkins D, Boglietti A, Cavagnino A. Influence of different end region cooling arrangements on end-winding heat transfer coefficients in electrical machines. 2010 IEEE Energy Conversion Congress and Exposition, Atlanta, GA, USA: IEEE; 2010, p. 1298–305. https://doi.org/10.1109/ECCE.2010.5617810
Tauseef MG, Chao S. Thermal analysis of PMSM stator using ANSYS. Master Thesis. Technische Universitat Darmstadt; 2014.
Ustun O, Cakan M, Tuncay RN, Mokukcu MS, Kivanc OC, Mutlu Y, et al. Design and manufacture of electric powertrain and its cooling system for ITU EV project. 2014 International Conference on Electrical Machines (ICEM), Berlin, Germany: IEEE; 2014, p. 730–5. https://doi.org/10.1109/ICELMACH.2014.6960262
Üstün Ö, Tuncay RN, Mökükcu MS, Kivanç ÖC, Tosun G, Gökçe C, et al. An integrated approach for the development of an electric vehicle powertrain: Design, analysis, and implementation. Turk J Electr Eng Comput Sci. 2018; 26: 1541–54. https://doi.org/10.3906/elk-1701-136
Wang S, Li Y, Li Y-Z, Wang J, Xiao X, Guo W. Transient cooling effect analyses for a permanent-magnet synchronous motor with phase-change-material packaging. Appl Therm Eng. 2016; 109: 251–60. https://doi.org/10.1016/j.applthermaleng.2016.08.036
Ragazzo P. Advanced e-machine design using open-access scripting languages with Motor-CAD solving engine. Master’s Thesis. Polıtecnıco Dı Torıno; 2020. Available from https://webthesis.biblio.polito.it/14009/1/tesi.pdf
Xia ZP, Zhou CQ, Shen D, Ni HJ, Yuan YN, Ping L. Study on the cooling system of super-capacitors for a hybrid electric vehicle. Appl Mech Mater. 2014; 492: 37–42. https://doi.org/10.4028/www.scientific.net/AMM.492.37
Xie Y, Wang Y. 3D temperature field analysis of the induction motors with broken bar fault. Appl Therm Eng. 2014; 66: 25–34. https://doi.org/10.1016/j.applthermaleng.2014.02.008
Sun Y, Zhang S, Yuan W, Tang Y, Li J, Tang K. Applicability study of the potting material-based thermal management strategy for permanent magnet synchronous motors. Appl Therm Eng. 2019; 149: 1370–8. https://doi.org/10.1016/j.applthermaleng.2018.12.141
TM4 SUMOTM HD. https://www.danatm4.com/products/systems/sumo-hd/ (June 28, 2022).
Touhami S, Bertin Y, Lefèvre Y, Llibre JF, Henaux C, Fenux M. Lumped parameter thermal model of permanent magnet synchronous machines. Electrimacs, Toulouse, France: University of Toulouse; 2017.
Fakhfakh MA. Thermal analysis of a permanent magnet synchronous motor for electric vehicles. J Asian Electr Veh. 2008; 6: 1145–51. https://doi.org/10.4130/jaev.6.1145
Gediz Ilis G, Demir H. A new adsorbent bed design: Optimization of geometric parameters and metal additive for the performance improvement. Appl Therm Eng. 2019; 162: 114270. https://doi.org/10.1016/j.applthermaleng.2019.114270
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2023 Mert Bedirhan Genç Genç, Rami Habash, Gamze Gediz Ilis, Alkan Alkaya, Hakan F. Öztop