Thermal and Compositional Analysis of Orange Essential Oil Obtained from Citrus Industry Waste
Abstract - 350
PDF

Keywords

Orange waste, Essential oil, Oil extraction, Chemical composition, Thermal behavior.

How to Cite

1.
Gabriel Ferreira, Louise Sobral, Daniel W. Barreto, Verônica Calado. Thermal and Compositional Analysis of Orange Essential Oil Obtained from Citrus Industry Waste. J. Adv. Therm. Sci. Res. [Internet]. 2020 Dec. 30 [cited 2025 Jan. 5];7(1):48-55. Available from: https://avantipublishers.com/index.php/jatsr/article/view/874

Abstract

 During the production of orange juice, more specifically after the commercial extraction of fruit juice, other waste materials are generated, consisting of peel, pieces of membranes, pulp bagasse, juice vesicles and seeds. In this way, the final destination of the waste can become a problem when not managed correctly. Therefore, there are several possibilities for using these solid residues, as they present substances of great commercial interest. In this perspective, the present work evaluates the recovery of orange essential oil from the citrus industry waste using hydrodistillation. The oil obtained was characterized by acidic index, FTIR, GC / MS, TGA and DSC. The results exhibited that oil isolated by hydrodistillation has a similarity with cold-pressed orange oil. The chemical constitution of oil obtained from waste was almost the same as the commercial orange oil analyzed. However, the thermal behaviour presents a few differences in thermal stability and vaporization temperature between analysed essential oils. Therefore, this work produces an alternative to obtain a product with quality, high yields and added value that can be used in cosmetic and pharmaceutical industries.
https://doi.org/10.15377/2409-5826.2020.07.6
PDF

References

Swingle, W.T.; Reece, P. C. (1967). The botany of Citrus and its wild relatives. In: Reuther,W.; Weber, H. J.; Batchelor, L. D., eds. The Citrus industry. History, World Distribution, Botany and Varieties, vol I., pag. 190-430. Berkeley: University of California Press.

Kademi, H. I.; Garba, U. (2017). Citrus peel essential oils: a review on composition and antimicrobial activities. International Journal of Food Safety, Nutrition, Public Health and Technology, 9(5), 38-44.

Faostat, 2010. World census of agriculture. Available from: http://faostat.fao.org/ (accessed 05.08.20).

Abecitrus, 2008. História da Laranja e Subprodutos da Laranja. Available from: www.abecitrus.com.br/ (accessed 10.08.20).

Braddock, R. J. (1999). Handbook of citrus by-products and processing technology. New York, NY, USA. John Wiley & Sons, Inc. https://doi.org/10.1016/s0308-8146(00)00128-x

Martínez, M.; Yáñez, R.; Alonsó, J. L.; Parajó, J. C. (2010). Chemical production of pectic oligosaccharides from orange peel wastes. Industrial & amp; engineering chemistry research, 49(18), 8470-8476. https://doi.org/10.1021/ie101066m

Roussos, P.A., 2011. Phytochemicals and antioxidant capacity of orange (Citrus sinensis (l.) Osbeck cv. Salustiana) juice produced under organic and integrated farming system in Greece. Sci. Hortic. 129, 253–258. https://doi.org/10.1016/j.scienta.2011.03.040

Santiago, B., Moreira, M. T., Feijoo, G., González-García, S. (2020) Identification of environmental aspects of citrus waste valorization into D-limonene from a biorefinery approach. Biomass and Bioenergy, 143: 105844. https://doi.org/10.1016/j.biombioe.2020.105844

Neelima Mahato, Kavita Sharma, Rakoti Koteswararao, Mukty Sinha, EkRaj Baral & Moo Hwan Cho (2017): Citrus essential oils: Extraction, authentication and application in food preservation, Critical Reviews in Food Science and Nutrition. https://doi.org/10.1080/10408398.2017.1384716

Rezzadori, K., Benedetti, S., & Amante, E. R. (2012). Proposals for the residues recovery: orange waste as raw material for new products. Food and bioproducts processing, 90(4), 606-614. https://doi.org/10.1016/j.fbp.2012.06.002

Vasek, O. M, Ca ceres, L. M, Chamorro, E. R., & Velasco, G. A. (2015). Antibacterial activity of Citrus paradisi essential oil. Journal of Natural Products, 8: 16-26.

Kirbaşlar, F. G., Tavman, A., Du lger, B., & Tu rker, G. (2009). Antimicrobial activity of Turkish citrus peel oils. Pakistan Journal of Botany, 41(6): 3207- 3212. https://doi.org/10.1080/22297928.2012.10648254

Kamal, G. M., Anwar, F., Hussain, A. I., Sarri, N., & Ashraf, M. Y. (2011). Yield and chemical composition of Citrus essential oils as affected by drying pretreatment of peels. International Food Research Journal, 18(4): 1275-1282.

Amorin, J. L., Simas, D. L. R., Pinheiro, M. M. G., Moreno, S. A., Alviano, C. S., Silva, A. J. R., & Fernandes, P. D. (2016). Anti-Inflammatory properties and chemical characterization of the essential oils of four citrus species. PLoS ONE, 11(4): 0153643. https://doi.org/10.1371/journal.pone.0153643

Dutra, K. A., Oliveira, J. V., Navarro, D. M. A. F., Barbosa, D. R. S., & Santos, J. P. O. (2016). Control of Callosobruchus maculatus (FABR.) (Coleoptera: Chrysomelidae: Bruchinae) in Vigna unguiculata (L.) WALP. With essential oils from four Citrus Spp. Plants. Journal of Stored Products Research, 68: 25- 32.

Mamma, D., & Christakopoulos, P. (2014). Biotransformation of citrus by-products into value added products. Waste and Biomass Valorization, 5(4), 529-549. https://doi.org/10.1007/s12649-013-9250-y

Golmakani, M. T., & Moayyedi, M. (2015). Comparison of heat and mass transfer of different microwave-assisted extraction methods of essential oil from Citrus limon (Lisbon variety) peel. Food Science and Nutrition, 3(6): 506–518. https://doi.org/10.1002/fsn3.240

Shakir, I. K., & Salih, S. J. (2015). Extraction ofessential Oils from Citrus by-products using microwave steam distillation. Iraqi Journal of Chemical and Petroleum Engineering, 16(3): 11-22. https://ijcpe.uobaghdad.edu.iq/index.php/ijcpe/article/view/ 258

Sahraoui, N., Vian, M. A., El-Maataoui, M., & Chemat, F. (2011). Valorization of citrus by-products using microwave steam distillation (MSD). Innovative Food Science & Emerging Technologies, 2: 163-170. https://doi.org/10.1016/j.ifset.2011.02.002

Ferhat, M. A.; Meklati, B. Y.; Chemat, F. Comparison of different isolation methods of essential oil from Citrus fruits: cold pressing, hydrodistillation and microwave ‘dry’ distillation. Flavour Fragrance J. 2007, 22, 494−504. DOI: https://doi.org/10.1002/ffj.1829

Raeissi, S., Diaz, S., Espinosa, S., Peters, C. J., & Brignole, E. A. (2008). Ethane as an alternative solvent for supercritical extraction of orange peel oils. The Journal of Supercritical Fluids, 45(3), 306-313. DOI: 10.1016/j.supflu.2008.01.008

Bica, K., Gaertner, P., & Rogers, R. D. (2011). Ionic liquids and fragrances–direct isolation of orange essential oil. Green Chemistry, 13(8), 1997-1999. https://doi.org/10.1039/c1gc15237h

Khandare, R., Tomke, P. D., Rathod V. K. (2020) Kinetic modeling and process intensification of ultrasound-assisted extraction of d-limonene using citrus industry waste. Chemical Engineering and Processing, 159: 108181. https://doi.org/10.1016/j.cep.2020.108181

Hilali, S., Fabiano-Tixier, A. S., Ruiz, K., Hejjaj, A., Ait Nouh, F., Idlimam, A., ... & Chemat, F. (2019). Green extraction of essential oils, polyphenols, and pectins from orange peel employing solar energy: Toward a zero-waste biorefinery. ACS Sustainable Chemistry & Engineering, 7(13), 11815- 11822. DOI: https://doi.org/10.1021/acssuschemeng.9b02281

Man, H. C., Hamzah, M. H., Jamaludin, H., Abidin, Z. Z. (2012). Preliminary Study: Kinects of Oil Extraction from Citronella Grass by Ohmic Heated Hydro Distillation. APCBEE Procedia, 3: 124-128. https://doi.org/10.1016/j.apcbee.2012.06.057

Medeiros, V. M., Nascimento, Y. M., Souto, A. L., Madeiro, S. A. L., Costa, V. C. O., Silva, S. M. P. M., Silva, V. S. F., Agra, M. F., Siqueira-Júnior, J. P., Tavares, J. F. (2017) Chemical composition and modulation of bacterial drug resistance of the essential oil from leaves of Croton grewioides. Microbial Pathogenesis, 111: 468-471. https://doi.org/10.1016/j.micpath.2017.09.034

Fernandes, V. F., de Almeida, L. B., Feijó, E. V. R. S., Silva, D. C., de Oliveira, R. A., Mielke, M. S., Costa, L. C. B. (2013) Light intensity on growth, leaf micromorphology and essential oil production of Ocimum gratissimum. Brazilian Journal of Pharmacognosy, 23(3): 419-424. https://doi.org/10.1590/s0102-695x2013005000041

Oliveira, G. L., Moreira, D. L., Mendes, A. D. R., Guimarães, E. F., Figueiredo, L. S., Kaplan, M. A. C., Martins, E. R. (2013) Growth study and essential oil analysis of Piper aduncum from two sites of Cerrado biome of Minas Gerais State, Brazil. Brazilian Journal of Pharmacognosy, 23: 743- 753. https://doi.org/10.1590/s0102-695x2013000500005

Mello, N. A., Cardoso, L. P., Ribeiro, A. P. B., Bicas, J. L. (2020) The effects of limonene on the crystallization of palm oil. LWT – Food Science and Technology, 133: 110079.

Affonso, C.R.G., Fernandes, R.M., Oliveira, J.M.G., Martins, M.C.C., Lima, S.G., Sousa Junior, G.R., Fernandes, M.Z.L.C.M., Zanini, S.F., 2012. Effects of the essential oil from fruits of Schinus terebinthifolius Raddi (Anacardiaceae) on reproductive functions in male rats. J. Braz. Chem. Soc. 23, 180–185. https://doi.org/10.1590/s0103-50532012000100025

Dannenberg, G.S., Funck, G.D., Mattei, F.J., Silva, W.P., Fiorentini, A.M., 2016. Antimicrobial and antioxidant activity of essential oil from pink pepper tree (Schinus terebinthifolius Raddi) in vitro and in cheese experimentally contaminated with Listeria monocytogenes. Innov. Food Sci. Emerg. Technol. 36, 120–127. https://doi.org/10.1016/j.ifset.2016.06.009

de Medeiros, T. D. M., Alexandrino, T. D., Pastore, G. M., Bicas, J. L. (20) Extraction and purification of limonene-1,2- diol obtained from the fungal biotransformation of limonene. Separation and Purification Technology, 254: 117683. https://doi.org/10.1016/j.seppur.2020.117683

Ozturka, B., Winterburna, J., Gonzalez-Miquel, M. (2019) Orange peel waste valorisation through limonene extraction using bio-based solvents. Biochemical Engineering Journal, 151: 107298.

Feng, J., Wang, R., Chen, Z., Zhang, S., Yuan, S., Cao, H., Jafari, S. M., Yang, W. (2020) Formulation optimization of Dlimonene-loaded nanoemulsions as a natural and efficient biopesticide. Colloids and Surfaces A, 596: 124746. https://doi.org/10.1016/j.colsurfa.2020.124746

Crowell, P. L. (1999). Prevention and therapy of cancer by dietary monoterpenes. The Journal of nutrition, 129(3), 775S-778S. https://doi.org/10.1093/jn/129.3.775s

Freitas, P. R., de Araújo, A. C. J., Barbosa, C. R. S., Muniz, D. F., Rocha, J. E., Neto, J. B. A., da Silva, M. M. C., Pereira, R. L. S., da Silva, L. E., do Amaral, W., Deschamps, C., Tintino, S. R., Ribeiro-Filho, J., Coutinho, H. D. M. (2020) Characterization and antibacterial activity of the essential oil obtained from the leaves of Baccharis coridifolia DC against multiresistant strains. Microbial Pathogenesis, 145, 104223. https://doi.org/10.1016/j.micpath.2020.104223

Jameson, C. W., et al. (1990). Toxicology and carcinogenesis studies of D-limonene in F344/N rats and B6C3F1 mice (gavage studies): Technical report. NTP. Technical Report Series. Vol. 347. Washington, DC: Department of Health and Human Services. National Toxicology Program.

Rena, Y., Liua, S., Jina, G., Yanga, X., Zhou, Y. J. (2020) Microbial production of limonene and its derivatives: Achievements and perspectives. Biotechnology Advances, 44: 107628. https://doi.org/10.1016/j.biotechadv.2020.107628

Molina, G., Pessôa, M. G., Bicas, J. L., Fontanille, P., Larroche, C., Pastore, G. M. (2019) Optimization of limonene biotransformation for the production of bulk amounts of α-terpineol. Bioresource Technology, 294: 122180. https://doi.org/10.1016/j.biortech.2019.122180

Castro-Rosas, J., Ferreira-Grosso, C.R., Gomez-Aldapa, C.A., Rangel-Vargas, E., Rodriguez-Marin, M.L., GuzmanOrtiz, F.A., Falfan-Cortes, R.N., 2017. Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food - a review. Food Res. Int. 102, 575– 587. https://doi.org/10.1016/j.foodres. 2017.09.054

Mancarz, G. F. F., Laba, L. C., Silva, T. A. M., Pazzim, M. S., de Souza, D., Prado, M. R. M., de Souza, L. M., Nakashima, T., Mello, R. G. (2019) Chemical composition and biological activity of Liquidambar styraciflua L. leaf essential oil. Industrial Crops & Products, 138, 111446. https://doi.org/10.1016/j.indcrop.2019.06.009

Marostica Junior, M. R., & Pastore, G. M. (2007). Biotransformação de limoneno: uma revisão das principais rotas metabólicas. 30(2), 382-387. Química Nova. https://doi.org/10.1590/s0100-40422007000200027

Zotti-Sperottoa, N. C., Melo, E. C., de Souza, M. I. L., Fonseca, M. C. M., Gonzaga, D. A., de Ávila, M. B. R., Demuner, A. J., Ventrella, M. C., Lelis, A. C. V. (2020) Effect of drying with ultrasonic pretreatment on the yield and quality of the essential oil of Varronia curassavica Jacq. and Ocimum gratissimum Linn. Industrial Crops and Products, 147, 112211. https://doi.org/10.1016/j.indcrop.2020.112211

Taipina, M. S., Garbelotti, M. L., Lamardo, L. C. A., Santosa, J. S., Rodas, M. A. B. (2011) The effect of gamma irradiation on the nutrional properties of sunflower whole grain cookies. Procedia Food, 1: 1992–1996. https://doi.org/10.1016/j.profoo.2011.09.293

Locali-Pereira, A. R., Lopes, N. A., Menis-Henrique, M. E. C., Janzantti, N. S., & Nicoletti, V. R. (2020). Modulation of volatile release and antimicrobial properties of pink pepper essential oil by microencapsulation in single-and doublelayer structured matrices. International Journal of Food Microbiology, 335, 108890. https://doi.org/10.1016/j.ijfoodmicro.2020.108890

Aguiar, M. C. S., Fernandes, J. B., & Forim, M. R. (2020). Evaluation of the microencapsulation of orange essential oil in biopolymers by using a spray-drying process. Scientific reports, 10(1), 1-11. https://doi.org/10.1038/s41598-020-68823-4

Errenst, C., Petermann, M., Kilzer, A. (2020) Encapsulation of limonene in yeast cells using the concentrated powder form technology. The Journal of Supercritical Fluids, 168, 105076. https://doi.org/10.1016/j.supflu.2020.105076

de Oliveira, E. R. M., & Vieira, R. P. (2020). Synthesis and characterization of poly (limonene) by photoinduced controlled radical polymerization. Journal of Polymers and the Environment, 28(11), 2931-2938. https://doi.org/10.1007/s10924-020-01823-7

Ezejiofor, T. L. N., Eke, N. V., Okechukwu, R. I., Nwoguikpe, R. N., & Duru, C. M. (2011). Waste to wealth: Industrial raw materials potential of peels of Nigerian sweet orange (Citrus sinensis

Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2007). Biological Effects of Essential Oils-A Review. Elsevier Food and Chemical Toxicology, 46:446-475.https://doi.org/10.1016/j.fct.2007.09.106

Volpe, M., Panno, D., Volpe, R., & Messineo, A. (2015). Upgrade of citrus waste as a biofuel via slow pyrolysis. Journal of Analytical and Applied Pyrolysis, 115, 66-76.https://doi.org/10.1016/j.jaap.2015.06.015

Oh, S., Hwang, H., Choi, H. S., Choi, J. W. (2014) Investigation of chemical modifications of micro-and macromolecules in bio-oil during hydrodeoxygenation with Pd/C catalyst in supercritical ethanol. Chemosphere, 117: 806 –814. https://doi.org/10.1016/j.chemosphere.2014.01.071

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2020 Gabriel Ferreira, Louise Sobral, Daniel W. Barreto ; Verônica Calado

Downloads

Download data is not yet available.