Abstract
The aim of this work is to provide a literature review in the area of modeling of particle size and particle size distribution of emulsion polymers. Modeling studies of emulsion polymerization are of great interest due to the industrial importance of latexes produced. There are two broad strategies adopted to model particle size distribution: 1) Lumped model in which average particle size assuming the monodispersed distribution is modelled. 2) Distributed model or population balance model in which full particle size distribution is modelled. Lumped model serves as a learning model and a stepping stone to develop a population balance model.
References
ValeH, DaissA, NaeemL, BeckerK, HungenbergD.Models in the Polymer Industry: What Present? What future. Macromol. Symp. 2013; 333 :286-296. https://doi.org/10.1002/masy.201300056
Cheng D, Arifar S, Sheibat-Othman N, PohnJ, McKenna TFL. Particle Coagulation of Emulsion Polymers: A Review of Experimental and Modeling Studies. Polymer Reviews 2018; 58: 717-759. https://doi.org/10.1080/15583724.2017.1405979
Lovell PA, SchorkFJ.Fundamentals of Emulsion Polymerization. Biomacromolecules2020; 21: 4396-4441. https://doi.org/10.1021/acs.biomac.0c00769
EI-Aasser MS, Fitch RM. Emulsion Co-polymerization and Particle Morphology. Future Directions in Polymer Colloids, MartinusNijhoff Publishers, Boston1987. https://doi.org/10.1007/978-94-009-3685-0_1
RamakrishnaD. Status of Population Balances. Rev. Chem. Engrg. 1985;3: 49-89. https://doi.org/10.1515/revce.1985.3.1.49
Brooks BW. Mass Transfer and Thermodynamics Effects in Emulsion Polymerization. British Polym. J. 1970; 2: 197-201. https://doi.org/10.1002/pi.4980020307
Brooks BW. Interfacial and Diffusion Phenomena in Emulsion Polymerization. British Polym. J.1971; 3: 269-273. https://doi.org/10.1002/pi.4980030605
MinKW, Ray WH.On the Mathematical Modeling of Emulsion Polymerization Reactors. J.Macromol. Sci. Revs Macromol. Chem.1974; C11: 177-255. https://doi.org/10.1080/15583727408546024
Min KW, Ray WH. The computer simulation of batch emulsion polymerization reactors through a detailed mathematical model. Journal of Applied Polymer science 1978; 22: 89-112. https://doi.org/10.1002/app.1978.070220108
MortonM, Kaizerman S, Altier MW. Swelling of Latex Particles. J Colloid. Sci. 1954;9: 300-312. https://doi.org/10.1016/0095-8522(54)90040-9
Asua JM, AdamsME, Sudol, ED. A NewApproach for the Estimation of Kinetic Parameters in Emulsion Polymerization Systems. I. Homopolymerization under Zero-One Conditions. J. Appl. Polym. Sci. 1990; 39: 1183-1213. https://doi.org/10.1002/app.1990.070390513
BarandiaranMI, Adams ME, De La Cal JC, Sudol ED, Asua JM. New approach for the Estimation of Kinetic Parameters in Emulsion Polymerization Systems. II. Homopolymerization Under Conditions wheren > 0.5.J. Appl. Polym. Sci.1992; 45: 2187-2197. https://doi.org/10.1002/app.1992.070451215
13. CoenEM, Peach S, Morrison,GilbertRG.FirstPrincipleCalculationsof Particle Formation in Emulsion Polymerization: Pseudo –Bulk Systems. Polymer 2004; 45: 3595-3608. https://doi.org/10.1016/j.polymer.2004.03.084
SmithWV, Ewart RH. Kinetics of Emulsion Polymerization. J. Chem. Phys. 1948;16: 592-599. https://doi.org/10.1063/1.1746951
StockmayerWH.Notes on Kinetics of Emulsion Polymerization. J. Polym. Sci.1957; 24: 314-317. https://doi.org/10.1002/pol.1957.1202410619
O’Toole JT. Kinetics of Emulsion Polymerization. J. Appl. Polym. Sci.1965; 9: 1291-1297. https://doi.org/10.1002/app.1965.070090410
Vale HM, Mckenna TF. Particle Formation in Vinyl Chloride Emulsion Polymerization: Reaction Modeling. Ind. Eng. Chem. Res. 2009; 48: 5193-5210.
Sajjadi S. Population Balance Modeling of Particle size distribution in monomer -starved semi-batch emulsion polymerization. AIChE J. 2009; 55: 3191-3205. https://doi.org/10.1002/aic.11917
Herrera-OrdonezJ.Simplified calculation of the Average number of Radicals Per Particle in Emulsion Polymerization: Effect of Particle Nucleation and Coagulation Rates. Macromol. React. Eng. 2019; 13: 1900025. https://doi.org/10.1002/mren.201900025
Sood A. Modeling of the Particle Size Distribution in Emulsion Polymerization. J. Appl. Polym. Sci. 2008; 109: 1403-1419. https://doi.org/10.1002/app.28083
OttewillRH. The Stability and Instability of Polymer Latices. In I. Pirrma (Ed.)EmulsionPolymerization Academic Press New York 1982.
Vanderhoff, JW. The Formaton of Coagulum in Emulsion Polymerization. In D.R. Bassett and A.E. Hamielec (Ed.), Emulsion Polymers and Emulsion Polymerization, ACS Symposium Series, WashingtonDC 1981. https://doi.org/10.1021/bk-1981-0165.ch011
Sheibat-Othman N, Vale HM, Pohn JM, McKenna TFL. Is Modeling PSD in Emulsion Polymerization a Finished Problem? An Overview. Macromolecular Reaction Engineering2017; 11:1-32. https://doi.org/10.1002/mren.201600059
Cauley DA, Giglio AJ, Thompson RW. On the modeling of continuous emulsion polymerization using a population balance with instantaneous radical termination. Chemical Engineering science1978; 33: 979-985. https://doi.org/10.1016/0009-2509(78)85189-6
Kirillov VA, Ray WH. The mathematical modeling of continuous emulsion polymerization reactors. Chemical Engineering science1978; 33: 1499-1506. https://doi.org/10.1016/0009-2509(78)85200-2
Kao CI, Gundlach DP, Nelsen RT. Kinetics of emulsion polymerization of styrene simulation model with varying free radical capture efficiency. Journal of Polymer science1984; 22: 3499-3519. https://doi.org/10.1002/pol.1984.170221162
Vanderhoff JW, VitkuskeJF, Bradford EB, AlfreyT. Some factors involved in the preparation of uniform particle size latexes. J. Polym. Sci.1956; 20: 225-234. https://doi.org/10.1002/pol.1956.120209501
Penlidis A, Mac Gregor JF, Hamielec AE. Dynamic modeling of emulsion polymerizationreactors.AIChE Journal1985; 31: 6. https://doi.org/10.1002/aic.690310602
Dougherty Eugene P. The SCOPE Dynamic Model for Emulsion Polymerization I. Theory. Journal of Applied Polymer science1986; 32: 3051-3078. https://doi.org/10.1002/app.1986.070320116
Dougherty Eugene P. The SCOPE Dynamic Model for Emulsion Polymerization to Comparison with Experiments and Applications Journal of Applied Polymer science 1986; 32: 3079-3095. https://doi.org/10.1002/app.1986.070320117
Rawlings JB, Ray WH. Stability of Continuous Emulsion Polymerization Reactors: A Detailed Model Analysis. Chemical Engineering Science1987; 42: 2767-2777. https://doi.org/10.1016/0009-2509(87)87028-8
Rawlings JB, Ray WH. Emulsion Polymerization Reactor Stability: Simplified Model Analysis AIChE Journal 1987; 33:10. https://doi.org/10.1002/aic.690331010
Rawlings JB, RayWH.TheModeling of Batch and Continuous Emulsion Polymerization Reactors. Part I. Model Formulation and Sensitivity to Parameters.Polym. Engg. Sci.1988; 28: 237-256. https://doi.org/10.1002/pen.760280502
RawlingsJB, Ray WH. The Modeling of Batch and Continuous Emulsion Polymerization Reactors. Part II. Comparison with Experimental Data from Continuous Stirred Tank Reactors, Polym. Engg. Sci.1988; 28: 257-278. https://doi.org/10.1002/pen.760280503
Rawlings JB. Analytical Solutions of Emulsion Polymerization Models. AIChE Journal1990; 36: 4. https://doi.org/10.1002/aic.690360413
TauerK,MullerI.Modeling Sustained Oscillations in Continuous Emulsion Polymerization of Vinyl Chloride. Acta Polymer 1993; 44: 285-293.
Paquet DA,RayWH.Tubular Reactors for Emulsion Polymerization: II Model Comparisons with Experiments. AIChE Journal1994, 40: 1. https://doi.org/10.1002/aic.690400111
Mayer MJJ, Meuldijk J, Thoenes D. Application pf the Plug Flow with Axial Dispersion Model for Continuous Emulsion Polymerization in a Pulsed Packed Column. Chemical Engineering Science 1996; 13: 3441-3448. https://doi.org/10.1016/0009-2509(95)00411-4
Kiparissides C, MacGregor JF, HamielecAE. Continuous Emulsion Polymerization, Modeling Oscillations in Vinyl Acetate Polymerization. Journal of Applied Polymer science 1997; 23: 401-418. https://doi.org/10.1002/app.1979.070230210
Ordonez JH, Olayo R, CarroS.On the Kinetics of Styrene Emulsion Polymerization Above CMC. I. A Mathematical Model. Journal of Polymer Science: Part A: Polymer Chemistry 2000; 38: 2201-2218. https://doi.org/10.1002/(sici)1099-0518(20000615)38:12%3C2201::aid-pola90%3E3.0.co;2-o
Ordonez JH, Olayo R. On the Kinetics of Styrene Emulsion Polymerization Above CMC. II. Comparison with experimental Results. Journal of Polymer Science: Part A: Polymer Chemistry2000; 38: 2219-2231. https://doi.org/10.1002/(sici)1099-0518(20000615)38:12%3C2219::aid-pola100%3E3.0.co;2-1
Immanuel CD, Doyle III FJ. Computationally Efficient Solution of Population Balance Models incorporating Nucleation, growth and Coagulation: Application to Emulsion Polymerization. Chemical Engineering Science2003; 58: 3681-3698. https://doi.org/10.1016/s0009-2509(03)00216-1
Sood A. Monodisperse Distribution. Indian Chemical Engineer 2002; 44: 75-81.
Immanuel CD, Cordeiro CF, Sundaram SS, Meadows ES, Doyle III FJ. Modeling of PSD in Emulsion Co-polymerization: Comparison with experimental data and parametric sensitivity studies. Computers and Chemical Engineering 2002; 26: 1133-1152. https://doi.org/10.1016/s0098-1354(02)00031-5
SoodA.Particle Size Distrubtion Control in Emulsion Polymerization. J. Appl. Polym. Sci.2004; 92: 2884-2902. https://doi.org/10.1002/app.20231
Fortuny M, Graillat C, Mckenna TF. Modeling the Nucleation Stage During Batch Emulsion Polymerization. AIChE Journal 2005; 51: 9. https://doi.org/10.1002/aic.10516
Arora S, Gesthuisen R, EngellS.Model based operation of EmulsionPolymerization Reactors with Evaporative Cooling: Application to Vinyl acetate Homo Polymerzation. Computers and Chemical Engineering 2007; 31: 552-564. https://doi.org/10.1016/j.compchemeng.2006.07.011
Vale HM, McKenna TF. Particle Formation in Vinyl Chloride Emulsion Polymerization: Reaction Modeling, Ind. Eng. Chem. Res. 2009; 48: 5193-5210. https://doi.org/10.1021/ie801406n
Almair M. Measurement Based ModelingAnd Control of Bimodal PSD in Batch Emulsion Polymerization.AIChE Journal 2010;56:2122-2136. https://doi.org/10.1002/aic.12148
Nadja H, Fernando A,DoloresK.Modeling, Simulation and Control of an Industrial, Semi-batch, Emulsion Polymerization Reactors. Computers and Chemical Engineering 2011; 35: 2066-2080. https://doi.org/10.1016/j.compchemeng.2011.05.016
Sood, A., and Lodhi, P., "Modeling Evidence in Support of Coagulative Nucleation Theory", J. Appl., Polym., Sci., 2011, 122, 517-531. https://doi.org/10.1002/app.33778
Jung, S., and Gomes, V., "Transitional Emulsion Polymerization: Zero-One to Pseudo bulk", Chemical Engineering Science,2011, 66 (18), 4251-4260. https://doi.org/10.1016/j.ces.2011.06.019
Sood, A. and Singh, A.,"A Lumped Model for Butyl Acrylate Emulsion Polymerization", Indian Chemical Engineer, 2012, 54, 235-244. https://doi.org/10.1080/00194506.2012.766002
Sood A., Bharti R. and Awasthi A., “Modeling of Butyl Acrylate Emulsion Polymerization: A Detailed Lumped Parameter Approach”, Indian Chemical Engineer, 2014, 56, 185-214. https://doi.org/10.1080/00194506.2014.910704
Sood A., Awasthi, A., and Bharti R. ," A Population Balance Model for Butyl Acrylate Emulsion Polymerization", Indian Chemical Engineer, 2016, 58, 40-60. https://doi.org/10.1080/00194506.2014.990743
Copelli, S., Marco, B., Noemi, P., Casson, M.V., "Modeling and Process Optimization of a Full-Scale Emulsion Polymerization Reactor", Chemical Engineering Journal, 2019, 358, 1410-1420. https://doi.org/10.1016/j.cej.2018.10.055
Quintero, U., Humberto, J., Silvia, O., Hugo, H., "A Reduced Order Multi Scale Model of a Semi-batch Emulsion Polymerization Process", Computers and Chemical Engineering, 2019, 127, 11-24. https://doi.org/10.1016/j.compchemeng.2019.04.029
Tulika Gaur and A. Sood, “Semibatch Emulsion PolymerizationModeling: Polybutyl Acrylate Case Study”, Indian Chemical Engineer, 2019, 61, 387-402. https://doi.org/10.1080/00194506.2019.1599737
Tulika Gaur and A. Sood, “Modeling of Particle Size Distribution in Butyl Acrylate Emulsion Polymerization in a Batch Reactor”, Indian Chemical Engineer, 2020, in press. https://doi.org/10.1080/00194506.2019.1706193
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.