Some Contradictions in the Multi-Layer Hele-Shaw Flow

Authors

  • Gelu PASA Simion Stoilow Institute of Mathematics of Romanian Academy, Calea Grivitei 21, Bucuresti Sector 1, Romania

DOI:

https://doi.org/10.15377/2409-787X.2019.06.5

Keywords:

Hele-Shaw immiscible displacement, Porous media flow, Linear stability.

Abstract

An important problem concerning the Hele-Shaw displacements is to minimize the Saffman - Taylor instability. To this end, some constant viscosity fluid layers can be introduced in an intermediate region (I.R.) between the displacing fluids. However, we prove that very small (positive) values of the growth rates can be obtained only for a very large (unrealistic) I.R. On the contrary, when the I.R. length is constrained by certain conditions (for instance, geological), then the maximum value of the growth constants can not fall below a certain value, not depending on the number of layers. This maximum value is not so small.

Downloads

Download data is not yet available.

References

Bear J. Dynamics of Fluids in Porous Media, Elsevier, New York, 1972.

Hele-Shaw HS. Investigations of the nature of surface resistence of water and of streamline motion under certain experimental conditions, Inst. Naval Architects Transactions 40(1898), 21-46.

Lamb H. Hydrodynamics, Dower Publications, New York, 1933.

Saffman PG, Taylor GI. The penetration of a fluid in a porous medium or Helle-Shaw cell containing a more viscous fluid, Proc Roy Soc A, 245(1958), 312-329. https://doi.org/10.1098/rspa.1958.0085 DOI: https://doi.org/10.1098/rspa.1958.0085

Homsy GM. Viscous fingering in porous media, Ann Rev Fluid Mech, 19(1987), 271-311. https://doi.org/10.1146/annurev.fl.19.010187.001415 DOI: https://doi.org/10.1146/annurev.fl.19.010187.001415

Saffman PG. Viscous fingering in Hele-Shaw cells, J Fl Mech, 173(1986), 73-94. https://doi.org/10.1017/S0022112086001088 DOI: https://doi.org/10.1017/S0022112086001088

Xu J-J. Interfacial Wave Theory of Pattern Formation in Solidification, Springer Series in Synergetics, Sproner, 2017. https://doi.org/10.1007/978-3-319-52663-8 DOI: https://doi.org/10.1007/978-3-319-52663-8

Al-Housseiny TT, Tsai PA, Stone HA, Control of interfacial instabilities using flow geometry, Nat Phys Lett, 8(2012), 747–750. https://doi.org/10.1038/nphys2396 DOI: https://doi.org/10.1038/nphys2396

Al-Housseiny TT, Stone HA. Controlling viscous fingering in Hele-Shaw cells, Physics of Fluids, 25(2013), pp. 092102. https://doi.org/10.1063/1.4819317 DOI: https://doi.org/10.1063/1.4819317

Chen C-Yo, Huang C-W, Wang L-C, Miranda JA. Controlling radial fingering patterns in miscible confined flows, Phys Rev E, 82(2010), pp. 056308. https://doi.org/10.1103/PhysRevE.82.056308 DOI: https://doi.org/10.1103/PhysRevE.82.056308

Diaz EO, Alvaez-Lacalle A, Carvalho MS, Miranda JA. Minimization of viscous fluid fingering: a variational scheme for optimal flow rates, Phys Rev Lett, 109(2012), pp. 144502. https://doi.org/10.1103/PhysRevLett.109.144502 DOI: https://doi.org/10.1103/PhysRevLett.109.144502

Sudaryanto B, Yortsos YC. Optimization of Displacements in Porous Media Using Rate Control, Society of Petroleum Engineers, Annual Technical Conference and Exhibition, 30 September-3 October, New Orleans, Louisiana (2001). https://doi.org/10.2118/71509-MS DOI: https://doi.org/10.2118/71509-MS

Gilje E, Simulations of viscous instabilities in miscible and immiscible displacement, Master Thesis in Petroleum Technology, University of Bergen, 2008.

Gorell SB, Homsy GM. A theory of the optimal policy of oil recovery by secondary displacement process, SIAM J Appl Math, 43(1983), 79-98. https://doi.org/10.1137/0143007 DOI: https://doi.org/10.1137/0143007

Gorell SB, Homsy GM. A theory for the most stable variable viscosity profile in graded mobility displacement process, AIChE J, 31(1985), 1598-1503. https://doi.org/10.1002/aic.690310912 DOI: https://doi.org/10.1002/aic.690310912

Shah G, Schecter R, eds., Improved Oil Recovery by Surfactants and Polymer Flooding, Academic Press, New York, 1977.

Slobod RL, Lestz SJ. Use of a graded viscosity zone to reduce fingering in miscible phase displacements, Producers Monthly, 24(1960), 12-19.

Uzoigwe AC, Scanlon FC, Jewett RL. Improvement in polymer flooding: The programmed slug and the polymerconserving agent, J Petrol Tech, 26(1974), 33-41. https://doi.org/10.2118/4024-PA DOI: https://doi.org/10.2118/4024-PA

Daripa P, Pasa G. On the growth rate of three-layer Hele- Shaw flows - variable and constant viscosity cases, Int J Engng Sci, 43(2004), 877-884. https://doi.org/10.1016/j.ijengsci.2005.03.006 DOI: https://doi.org/10.1016/j.ijengsci.2005.03.006

Daripa P, Pasa G. New bounds for stabilizing Hele-Shaw flows, Appl Math Lett, 18(2005), 12930-1303. https://doi.org/10.1016/j.aml.2005.02.027 DOI: https://doi.org/10.1016/j.aml.2005.02.027

Daripa P, Pasa G. A simple derivation of an upper bound in the presence of viscosity gradient in three-layer Hele-Shaw flows, J Stat Mech, P 01014(2006). https://doi.org/10.1088/1742-5468/2006/01/P01014 DOI: https://doi.org/10.1088/1742-5468/2006/01/P01014

Tanveer S. Evolution of Hele-Shaw interface for small surface tension, Philosophical Trans Roy Soc A, Published 15 May 1993.DOI: 10.1098/rsta.1993.0049. https://doi.org/10.1098/rsta.1993.0049 DOI: https://doi.org/10.1098/rsta.1993.0049

Tanveer S. Surprises in viscous fingering, J Fluid Mech, 409(2000), 273-368: https://doi.org/10.1017/S0022112099007788 DOI: https://doi.org/10.1017/S0022112099007788

Daripa P. Hydrodynamic stability of multi-layer Hele-Shaw flows, J Stat Mech, Art. No. P12005(2008). https://doi.org/10.1088/1742-5468/2008/12/P12005 DOI: https://doi.org/10.1088/1742-5468/2008/12/P12005

Daripa P. Some Useful Upper Bounds for the Selection of Optimal Profiles, Physica A: Statistical Mechanics and its Applications 391(2012). 4065-4069. https://doi.org/10.1016/j.physa.2012.03.041 DOI: https://doi.org/10.1016/j.physa.2012.03.041

Daripa P, Ding X, Universal stability properties for Multi-layer Hele-Shaw flows and Applications to Instability Control, SIAM J Appl Math, 72(2012), 1667-1685. https://doi.org/10.1137/11086046X DOI: https://doi.org/10.1137/11086046X

Daripa P, Ding X. A Numerical Study of Instability Control for the Design of an Optimal Policy of Enhanced Oil Recovery by Tertiary Displacement Processes, Tran. Porous Media 93(2012), 675-703. https://doi.org/10.1007/s11242-012-9977-0 DOI: https://doi.org/10.1007/s11242-012-9977-0

Mungan N. Improved waterflooding through mobility control, Canad J Chem Engr, 49(1971), 32-37. https://doi.org/10.1002/cjce.5450490107 DOI: https://doi.org/10.1002/cjce.5450490107

Loggia D, Rakotomalala N, Salin D, Yortsos YC. The effect of mobility gradients on viscous instabilities in miscible flows in porous media, Ì? Physics of Fluids, 11(1999), 740-742. https://doi.org/10.1063/1.869943 DOI: https://doi.org/10.1063/1.869943

Talon L, Goyal N, Meiburg E. Variable density and viscosity, miscible displacements in horizontal Hele-Shaw cells. Part 1. Linear stability analysis, J Fluid Mech, 721(2013), 268-294. https://doi.org/10.1017/jfm.2013.63 DOI: https://doi.org/10.1017/jfm.2013.63

US Geological Survey, Applications of SWEAT to select Variable-Density and Viscosity Problems, U. S Department of the Interior, Specific Investigations Report 5028 (2009).

Flory PJ. Principles of Polymer Chemistry, Ithaca, New York, Cornell University Press, 1953.

Downloads

Published

2019-12-05

Issue

Section

Articles

How to Cite

1.
Some Contradictions in the Multi-Layer Hele-Shaw Flow. Int. J. Pet. Technol. [Internet]. 2019 Dec. 5 [cited 2026 Feb. 13];6:41-8. Available from: https://avantipublishers.com/index.php/ijpt/article/view/826

Similar Articles

11-20 of 31

You may also start an advanced similarity search for this article.