Effects of Pressure Gradients on Energy Dissipation Coefficient

Authors

  • Soheil Soleimani Florida International University, Miami, FL 33199, USA
  • E. Ghasemi Florida International University, Miami, FL 33199, USA
  • M.A. Almas Florida International University, Miami, FL 33199, USA

DOI:

https://doi.org/10.15377/2409-5826.2014.01.02.6

Keywords:

Rans Models, Bypass transition, Pressure gradients, Entropy generation, Transitional boundary layer, Energy dissipation coefficient

Abstract

In this study energy dissipation coefficient and entropy generation process in characteristic wall shear flows have been investigated. Effect of pressure gradients on energy dissipation coefficient for flows undergoing “bypass” transition from laminar to turbulent state has been studied. Reynolds-Averaged Navier-Stokes (RANS) models and Direct Numerical Simulations (DNS) are implemented to study the energy dissipation coefficient and local entropy generation in pre-transitional and transitional regions. Three of these RANS models are transitional models such as, traditional SST k-w (2eq), SST k-w (4eq) and k - kl -w and the results are compared with DNS. Four simulations have been performed for (1) zero, (2) favorable, (3) adverse and (4) strong-adverse pressure gradient cases. The numerical results show that the pressure gradient has a significant effect on energy dissipation coefficient and entropy generation.

Downloads

Download data is not yet available.

Author Biographies

  • Soheil Soleimani, Florida International University, Miami, FL 33199, USA

    Department of Mechanical and Materials Engineering

  • E. Ghasemi, Florida International University, Miami, FL 33199, USA

    Department of Mechanical and Materials Engineering

  • M.A. Almas, Florida International University, Miami, FL 33199, USA

    Department of Mechanical and Materials Engineering

References

Rose MG. What should we measure? An aero-engine turbine aero-dynamic perspective. XIV Bi-annual Symp. Meas. Techniques in Transonic and Supersonic Flow in Cascades and Turbomachines, Limerick, September, 1998.

McEligot DM, Walsh EJ, Laurien E, Spalart PR, Entropy generation in the viscous parts of a turbulent boundary layer. J Fluids Eng. 2008; 130: 061205-1 to -12. DOI: https://doi.org/10.1115/1.2928376

McEligot DM, Nolan KP, Walsh EJ, Laurien E. Effect of pressure gradients on entropy generation in the viscous layers of turbulent wall flows. Int J Heat Mass Transfer 2008; 51: 1104-1114. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2007.05.008 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2007.05.008

McEligot DM, Brodkey RS, Eckelmann H. Laterally converging duct flows: Part 4. Temporal behavior in the viscous layer. J. Fluid Mech 2009; 634: 433-461. http://dx.doi.org/10.1017/S0022112009006727 DOI: https://doi.org/10.1017/S0022112009006727

Ghasemi E, McEligot DM, Nolan KP, Crepeau J, Tokuhiro A, Budwig RS, Entropy generation in a transitional boundary layer region under the influence of freestream turbulence using transitional RANS models and DNS. International Communications in Heat and Mass Transfer 2013; 41: 10-16. http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.11.005 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2012.11.005

Ghasemi E, McEligot DM, Nolan KP, Crepeau J, Siahpush A, Budwig RS, Tokuhiro A. Effects of adverse and favorable pressure gradients on entropy generation in a transitional boundary layer region under the influence of freestream turbulence. International Journal of Heat and Mass Transfer 2014; 77: 475-488. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2014.05.028 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2014.05.028

Ghasemisahebi E. Entropy generation in transitional boundary layers. LAP LAMBERT Academic Publishing 2013.

Rotta JC. Turbulent boundary layers in incompressible flow. Prog. Aero. Sci 2. Oxford: Pergamon Press 1962. DOI: https://doi.org/10.1016/0376-0421(62)90014-3

Schlichting H. Boundary layer theory, 6th ed. New York McGraw-Hill 1968.

Nolan KP, Zaki TA. Conditional Sampling of Transitional Boundary Layers in Pressure Gradients. J Fluid Mech 2013; 728: 306-339. http://dx.doi.org/10.1017/jfm.2013.287 DOI: https://doi.org/10.1017/jfm.2013.287

Walsh EJ, McEligot DM, Brandt L, Schlatter P. Entropy generation in boundary layers transitioning under the influence of freestream turbulence. J Fluids Eng 2011; 133: 061203-1-10 -10. DOI: https://doi.org/10.1115/1.4004093

Nolan K, Walsh EJ, McEligot DM, Volino RJ. Predicting entropy generation rates in transitional boundary layers based on intermittency. J. Turbomachinery 2007; 129(3): 512-517. http://dx.doi.org/10.1115/1.2720488 DOI: https://doi.org/10.1115/1.2720488

Taeibi-Rahni M, Ramezanizadeh M, Ganji DD, Darvan A, Ghasemi E, Soleimani S, Bararni H. Large-eddy simulations of three dimensional turbulent jet in a cross flow using a dynamic subgrid-scale eddy viscosity model with a global model coefficient. World Appl Sci J 2010; 9: 1191-1200.

Taeibi-Rahni M, Ramezanizadeh M, Ganji DD, Darvan A, Ghasemi E, Soleimani S, Bararni H, Large-eddy simulations of three dimensional turbulent jet in a cross flow using a dynamic subgrid-scale eddy viscosity model with a global model coefficient. World Appl Sci J 2010; 9: 1191-1200.

Taeibi-Rahni M, Ramezanizadeh M, Ganji DD, Darvan A, Ghasemi E, Soleimani S, Bararni H. Comparative study of large eddy simulation of film cooling using a dynamic globalcoefficient subgrid scale eddy-viscosity model with RANS and Smagorinsky Modeling. Int. Commun. Heat. Mass. Trans 2011; 38: 659-667. http://dx.doi.org/10.1016/j.icheatmasstransfer.2011.02.002 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2011.02.002

Ghasemi E, Bayat M, Bayat M. Visco-Elastic MHD flow of Walters liquid b fluid and heat transfer over a non-isothermal stretching sheet. International Journal of Physical Sciences 2011; 6(21): 5022-5039.

Ghasemi E, Soleimani S, Bararnia H, Domairry G. Influence of Uniform Suction/Injection on Heat Transfer of MHD Hiemenz Flow in Porous Media. ASCE Journal of Engineering Mechanics 2012; 138(1): 82-88. http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000301 DOI: https://doi.org/10.1061/(ASCE)EM.1943-7889.0000301

Bararnia H, Ghasemi E, Soleimani S, Baraei A, Ganji DD. HPM-Padé method on natural convection of Darcian fluid about a vertical full cone embedded in porous media. Journal of Porous Media 2011; 14: 545-553. http://dx.doi.org/10.1615/JPorMedia.v14.i6.80 DOI: https://doi.org/10.1615/JPorMedia.v14.i6.80

Bararnia H, Ghasemi E, Domairry G, Soleimani S. Behavior of micro-polar flow due to linear stretching of porous sheet with injection and suction. Advances in Engineering software 2010; 41: 893-897. http://dx.doi.org/10.1016/j.advengsoft.2009.12.007 DOI: https://doi.org/10.1016/j.advengsoft.2009.12.007

Bararnia H, Ghasemi E, Soleimani S, Ghotbi AR, Ganji DD. Solution of the Falkner-Skan wedge flow by HPMPade’method. Advances in Engineering Software 2012; 43: 44-52. http://dx.doi.org/10.1016/j.advengsoft.2011.08.005 DOI: https://doi.org/10.1016/j.advengsoft.2011.08.005

Moghimi SM, Domairry G, Bararni H, Ghasemi E, Soleimani S. Application of homotopy analysis method to solve MHD Jeffery-Hamel flows in non-parallel walls. Advances in Engineering Software 2011; 42: 108-113. http://dx.doi.org/10.1016/j.advengsoft.2010.12.007 DOI: https://doi.org/10.1016/j.advengsoft.2010.12.007

Ganji DD, Bararnia H, Soleimani S, Ghasemi E. Analytical solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet. Modern Phy. Letter B 2009; 23: 2541-2556. http://dx.doi.org/10.1142/S0217984909020692 DOI: https://doi.org/10.1142/S0217984909020692

Jalaal M, Ghasemi E, Ganji DD, Bararnia H, Soleimani S, Nejad GM, Esmaeilpour M, Effect of temperaturedependency of surface emissivity on heat transfer using the parameterized perturbation method. Thermal Science 2011; 15: 123-125. http://dx.doi.org/10.2298/TSCI11S1123J DOI: https://doi.org/10.2298/TSCI11S1123J

Ghasemi E , Soleimani S, Bayat M. Control Volume Based Finite Element Method Study of Nano-fluid Natural Convection Heat Transfer in an Enclosure Between a Circular and a Sinusoidal Cylinder. Int. J. Nonlinear. Scienc. Numeric. Simulation 2013; 13(7-8): 521-532. DOI: https://doi.org/10.1515/ijnsns-2012-0177

Ghasemi E, Soleimani S, Bararnia H. Natural convection between a circular enclosure and an elliptic cylinder using Control Volume based Finite Element Method. Int. Commun. Heat. Mass. Trans 2012; 39: 1035-1044. http://dx.doi.org/10.1016/j.icheatmasstransfer.2012.06.016 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2012.06.016

Kutanaei SS, Ghasemi E, Bayat M. Mesh-free modeling of two-dimensional heat conduction between eccentric circular cylinders. Int.l J. Phys. Scienc 2011; 6(16): 4044-4052.

Seyyedi SM, Soleimani S, Ghasemi E, Ganji DD, gorji M, Bararnia H. Numerical Investigation of Laminar Mixed Convection in a Cubic Cavity by MRT-LBM: Effects of the Sliding Direction. Numerical Heat Transfer A 2013; 63: 285- 304. http://dx.doi.org/10.1080/10407782.2013.730456 DOI: https://doi.org/10.1080/10407782.2013.730456

Soleimani S, Ganji DD, Gorji M, Bararnia H, Ghasemi E, Optimal location of a pair heat source-sink in an enclosed square cavity with natural convection through PSO algorithm. Int. Commun. Heat. Mass. Trans 2011; 38: 652-658. http://dx.doi.org/10.1016/j.icheatmasstransfer.2011.03.004 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2011.03.004

Moghimi SM, Domairry G, Bararni H, Soleimani S, Ghasemi E. Numerical Study of Natural Convection in an Inclined Lshaped Porous Enclosure. Adv Theor Appl Mech 2012; 5: 237-245.

Bararnia H, Jalaal M, Ghasemi E, Soleimani S, Ganji DD, Mohammadi F. Numerical simulation of joule heating phenomenon using meshless RBF-DQ method. International Journal of Thermal Sciences 2010; 49: 2117-2127. http://dx.doi.org/10.1016/j.ijthermalsci.2010.06.008 DOI: https://doi.org/10.1016/j.ijthermalsci.2010.06.008

Soleimani S, Ganji DD, Ghasemi E, Jalaal M, Bararnia H. Meshless local RBF-DG for 2-D heat conduction: A comparative study. Thermal Science 2011; 15: 117-121. http://dx.doi.org/10.2298/TSCI11S1117S DOI: https://doi.org/10.2298/TSCI11S1117S

Jalaal M, Soleimani S, Domairry G, Ghasemi E, Bararnia H, Mohammadi F, Barari A. Numerical simulation of voltage electric field in complex geometries for different electrode arrangements using meshless local MQ-DQ method. Journal of Electrostatics 2011; 69: 168-175. http://dx.doi.org/10.1016/j.elstat.2011.03.005 DOI: https://doi.org/10.1016/j.elstat.2011.03.005

Soleimani S, Jalaal M, Bararnia H, Ghasemi E, Ganji DD, Mohammadi F. Local RBF-DQ method for two-dimensional transient heat conduction problems. Int Commun Heat Mass. Trans 2010; 37: 1411-1418. http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.06.033 DOI: https://doi.org/10.1016/j.icheatmasstransfer.2010.06.033

Downloads

Published

2015-01-09

Issue

Section

Articles

How to Cite

1.
Effects of Pressure Gradients on Energy Dissipation Coefficient. J. Adv. Therm. Sci. Res. [Internet]. 2015 Jan. 9 [cited 2026 Feb. 13];1(2):71-7. Available from: https://avantipublishers.com/index.php/jatsr/article/view/1206

Similar Articles

21-30 of 69

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)