Thermal Conductivity of Suspended Si Nanostructures: Design and Fabrication

Authors

  • J. Rodríguez-Viejo Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
  • L. Licea-Jiménez Centro de Investigación en Materiales Avanzados S. C. Unit Monterrey-PIIT 66600 Apodaca, N. L. Mexico
  • S.A. Pérez-García Centro de Investigación en Materiales Avanzados S. C. Unidad Monterrey-PIIT 66600 Apodaca, N. L. Mexico
  • J. Alvarez-Quintana Centro de Investigación en Materiales Avanzados S. C. Unidad Monterrey-PIIT 66600 Apodaca, N. L. México

DOI:

https://doi.org/10.15377/2409-5826.2015.02.01.1

Keywords:

Si Nanostructures, Thermal Conductivity, Nanoscale Heat Transfer.

Abstract

It is presented a process for engineering suspended Si nanostructures in order to measure the thermal conductivity in Si thin films and nanowires based on standard photolithographic techniques. Unlike previous works where the nanostructure was typically grown ex situ, and then mechanically placed and contacted between the two microheaters which introduce a contact thermal resistance that difficult an easy interpretation of the experimental results by increasing the uncertainty of the measured thermal conductance of the nanostructure; in this research, the nanostructure is defined from silicon-on-insulator wafers via FIB with the objective to minimize the thermal contact resistance between the nanostructure under test and the heat sources. It has been demonstrated by experimental measurements that this suspended device is well adapted for the measurement, control and analysis of the thermal conductivity of nanoscale Si thin films and nanowires. FIB micro-fabrication strategy could be used to obtain Si based nanostructures with very low thermal conductivity which is a desirable characteristic in thermoelectric applications for thermal energy harvesting and solid state refrigeration as well.

Downloads

Download data is not yet available.

Author Biography

  • J. Rodríguez-Viejo, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

    Nanomaterials and Microsystems Group, Physics Department

References

Prokes SM, Stephen A. Synthesis of Si nanowires for MEMS cantilever sensor applications. Nanosensing: Materials Dev. Proceedings SPIE. 2004; 5593: 88-100. http://dx.doi.org/10.1117/12.578765 DOI: https://doi.org/10.1117/12.578765

Chen YT, Cho YH, Takama N, Löw P, Bergaud C, Kim BJ. Simple fabrication of Si nanowire and its biological application. J Physics: Conference Series. 2009; 152: 1-7. DOI: https://doi.org/10.1088/1742-6596/152/1/012048

Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J Heat Transfer 2003; 125: 881-888. http://dx.doi.org/10.1115/1.1597619 DOI: https://doi.org/10.1115/1.1597619

Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A. Thermal conductivity of individual silicon nanowires. App Phys Lett 2003; 83(14): 2934-2936. http://dx.doi.org/10.1063/1.1616981 DOI: https://doi.org/10.1063/1.1616981

Gewalt A, Kalkofen B, Lisker M, Burte EP. Epitaxial growth of Si nanowires by a modified VLS method using molten Ga as growth assistant. Mater Res Soc Symp Proc 2009; 1144: LL03-11. DOI: https://doi.org/10.1557/PROC-1144-LL03-11

Ju YS. Phonon heat transport in silicon nanostructures. Appl Phys Lett 2005; 87: 153106-1-3. http://dx.doi.org/10.1063/1.2089178 DOI: https://doi.org/10.1063/1.2089178

Hao Z, Zhinchao L, Lilin T, Zhimin T, Litian L, Zhijian L. Thermal conductivity measurements of ultra-thin single crystal silicon films using improved structure. 8th Inter. Confer. Solid-State Integ Circuit Tech Proc 2006: 2196-2198. DOI: https://doi.org/10.1109/ICSICT.2006.306679

Liang LH, B Li B. Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys Rev B 2006; 73: 153303-1-4. http://dx.doi.org/10.1103/PhysRevB.73.153303 DOI: https://doi.org/10.1103/PhysRevB.73.153303

Asheghi M, Leung YK, Wong SS, Goodson KE. Phononboundary scattering in thin silicon layers. Appl Phys Lett 1997; 71(13): 1798-1780. http://dx.doi.org/10.1063/1.119402 DOI: https://doi.org/10.1063/1.119402

Liu W, Asheghi M. Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl Phys Lett 2004; 84(19): 3819-3821. http://dx.doi.org/10.1063/1.1741039 DOI: https://doi.org/10.1063/1.1741039

Ju S, Goodson KE. Phonon scattering in silicon films with thickness of order 100 nm. Appl Phys Lett 1999; 74(20): 3005-3007. http://dx.doi.org/10.1063/1.123994 DOI: https://doi.org/10.1063/1.123994

Cahill DG, Watson SK, Pohl RO. Lower limit to the thermal conductivity of disordered crystals. Phys Rev B 1992; 46(10): 6131-6140. http://dx.doi.org/10.1103/PhysRevB.46.6131 DOI: https://doi.org/10.1103/PhysRevB.46.6131

Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008; 451: 163-167. http://dx.doi.org/10.1038/nature06381 DOI: https://doi.org/10.1038/nature06381

Martin P, Aksamija Z, Pop E, Ravaioli U. Impact of phononsurface roughness scattering on thermal conductivity of thin Si nanowires. Phys Rev Lett 2009; 102: 125503-1 to -4. DOI: https://doi.org/10.1103/PhysRevLett.102.125503

Downloads

Published

2015-01-15

Issue

Section

Articles

How to Cite

1.
Thermal Conductivity of Suspended Si Nanostructures: Design and Fabrication. J. Adv. Therm. Sci. Res. [Internet]. 2015 Jan. 15 [cited 2026 Feb. 13];2(1):1-11. Available from: https://avantipublishers.com/index.php/jatsr/article/view/211

Similar Articles

11-20 of 75

You may also start an advanced similarity search for this article.