Thermal Conductivity of Suspended Si Nanostructures: Design and Fabrication
DOI:
https://doi.org/10.15377/2409-5826.2015.02.01.1Keywords:
Si Nanostructures, Thermal Conductivity, Nanoscale Heat Transfer.Abstract
It is presented a process for engineering suspended Si nanostructures in order to measure the thermal conductivity in Si thin films and nanowires based on standard photolithographic techniques. Unlike previous works where the nanostructure was typically grown ex situ, and then mechanically placed and contacted between the two microheaters which introduce a contact thermal resistance that difficult an easy interpretation of the experimental results by increasing the uncertainty of the measured thermal conductance of the nanostructure; in this research, the nanostructure is defined from silicon-on-insulator wafers via FIB with the objective to minimize the thermal contact resistance between the nanostructure under test and the heat sources. It has been demonstrated by experimental measurements that this suspended device is well adapted for the measurement, control and analysis of the thermal conductivity of nanoscale Si thin films and nanowires. FIB micro-fabrication strategy could be used to obtain Si based nanostructures with very low thermal conductivity which is a desirable characteristic in thermoelectric applications for thermal energy harvesting and solid state refrigeration as well.
Downloads
References
Prokes SM, Stephen A. Synthesis of Si nanowires for MEMS cantilever sensor applications. Nanosensing: Materials Dev. Proceedings SPIE. 2004; 5593: 88-100. http://dx.doi.org/10.1117/12.578765 DOI: https://doi.org/10.1117/12.578765
Chen YT, Cho YH, Takama N, Löw P, Bergaud C, Kim BJ. Simple fabrication of Si nanowire and its biological application. J Physics: Conference Series. 2009; 152: 1-7. DOI: https://doi.org/10.1088/1742-6596/152/1/012048
Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, et al. Measuring thermal and thermoelectric properties of one-dimensional nanostructures using a microfabricated device. J Heat Transfer 2003; 125: 881-888. http://dx.doi.org/10.1115/1.1597619 DOI: https://doi.org/10.1115/1.1597619
Li D, Wu Y, Kim P, Shi L, Yang P, Majumdar A. Thermal conductivity of individual silicon nanowires. App Phys Lett 2003; 83(14): 2934-2936. http://dx.doi.org/10.1063/1.1616981 DOI: https://doi.org/10.1063/1.1616981
Gewalt A, Kalkofen B, Lisker M, Burte EP. Epitaxial growth of Si nanowires by a modified VLS method using molten Ga as growth assistant. Mater Res Soc Symp Proc 2009; 1144: LL03-11. DOI: https://doi.org/10.1557/PROC-1144-LL03-11
Ju YS. Phonon heat transport in silicon nanostructures. Appl Phys Lett 2005; 87: 153106-1-3. http://dx.doi.org/10.1063/1.2089178 DOI: https://doi.org/10.1063/1.2089178
Hao Z, Zhinchao L, Lilin T, Zhimin T, Litian L, Zhijian L. Thermal conductivity measurements of ultra-thin single crystal silicon films using improved structure. 8th Inter. Confer. Solid-State Integ Circuit Tech Proc 2006: 2196-2198. DOI: https://doi.org/10.1109/ICSICT.2006.306679
Liang LH, B Li B. Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys Rev B 2006; 73: 153303-1-4. http://dx.doi.org/10.1103/PhysRevB.73.153303 DOI: https://doi.org/10.1103/PhysRevB.73.153303
Asheghi M, Leung YK, Wong SS, Goodson KE. Phononboundary scattering in thin silicon layers. Appl Phys Lett 1997; 71(13): 1798-1780. http://dx.doi.org/10.1063/1.119402 DOI: https://doi.org/10.1063/1.119402
Liu W, Asheghi M. Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl Phys Lett 2004; 84(19): 3819-3821. http://dx.doi.org/10.1063/1.1741039 DOI: https://doi.org/10.1063/1.1741039
Ju S, Goodson KE. Phonon scattering in silicon films with thickness of order 100 nm. Appl Phys Lett 1999; 74(20): 3005-3007. http://dx.doi.org/10.1063/1.123994 DOI: https://doi.org/10.1063/1.123994
Cahill DG, Watson SK, Pohl RO. Lower limit to the thermal conductivity of disordered crystals. Phys Rev B 1992; 46(10): 6131-6140. http://dx.doi.org/10.1103/PhysRevB.46.6131 DOI: https://doi.org/10.1103/PhysRevB.46.6131
Hochbaum AI, Chen R, Delgado RD, Liang W, Garnett EC, Najarian M, et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature 2008; 451: 163-167. http://dx.doi.org/10.1038/nature06381 DOI: https://doi.org/10.1038/nature06381
Martin P, Aksamija Z, Pop E, Ravaioli U. Impact of phononsurface roughness scattering on thermal conductivity of thin Si nanowires. Phys Rev Lett 2009; 102: 125503-1 to -4. DOI: https://doi.org/10.1103/PhysRevLett.102.125503
Downloads
Published
Issue
Section
License
Copyright (c) 2015 J. Rodríguez-Viejo; L. Licea-Jiménez, S.A. Pérez-García; J. Alvarez-Quintana

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
All the published articles are licensed under the terms of the Creative Commons Attribution Non-Commercial License (CC BY-NC 4.0) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.


