Abstract
Presently, old gas turbines are used in the industry of some developing countries without high tech, which face many problems in the field of thermal efficiency and output power. Typically, turbines operate in the temperature range of 1200 to 1500 degrees Celsius. Many studies have been done to increase the efficiency of such systems. The results show that this increase in temperature at the inlet of the gas turbine has negative consequences, such as increasing the thermal load of the turbine blades and thus reducing the lifetime of the blades. On the other hand, a damaged blade can cause serious damage to other blades as well as the main shaft and other parts in various ways and sometimes lead to complete failure of the turbine. Therefore, it is reasonable to consider cost reduction considerations, including maintenance. Hence, due to the limitation of thermal stresses for the continuous operation of gas turbine blades, the distribution of heat transferred to them must be controlled. In this regard, the presence of blade cooling mechanisms is necessary for its safe operation, because the operating temperature of the gas turbine is much higher than the allowable temperature of the blades. In addition to cooling the blades, cooling the shell and inlet nozzle of gas turbines is also extremely important. But since the blades are exposed to high-level stress and tension for a long time, their cooling is more important and sensitive. For this reason, in the present article, the authors tried to provide a short introduction to the efficient mechanisms in cooling the blades related to the old systems, whose effect is noticeable on increasing the lifetime of the blades.
References
Ridha WKM, Kashyzadeh RK, Ghorbani S. Common failures in hydraulic kaplan turbine blades and practical solutions. Materials. 2023; 16(9): 3303. https://doi.org/10.3390/ma16093303
Kashyzadeh KR, Arghavan A. Study of the effect of different industrial coating with microscale thickness on the CK45 steel by experimental and finite element methods. Strength Mater. 2013; 45: 748-57. https://doi.org/10.1007/s11223-013-9510-x
Arghavan A, Reza Kashyzadeh K, Asfarjani, AA. Investigating effect of industrial coatings on fatigue damage. Appl Mech Mater. 2011; 87: 230-37. https://doi.org/10.4028/www.scientific.net/AMM.87.230
Kashyzadeh KR. A new algorithm for fatigue life assessment of automotive safety components based on the probabilistic approach: The case of the steering knuckle. Eng Sci Technol. 2020; 23(2): 392-404. https://doi.org/10.1016/j.jestch.2019.05.011
Kashyzadeh KR, Farrahi GH, Shariyat M, Ahmadian MT. Experimental accuracy assessment of various high-cycle fatigue criteria for a critical component with a complicated geometry and multi-input random non-proportional 3D stress components. Eng Fail Anal. 2018; 90: 534-53. https://doi.org/10.1016/j.engfailanal.2018.03.033
Shariyat M. New multiaxial HCF criteria based on instantaneous fatigue damage tracing in components with complicated geometries and random non-proportional loading conditions. Int J Damage Mech. 2010; 19(6): 659-90. https://doi.org/10.1177/1056789509338317
Shariyat M. Three energy‐based multiaxial HCF criteria for fatigue life determination in components under random non‐proportional stress fields. Fatigue Fract Eng Mater Struct. 2009; 32(10): 785-808. https://doi.org/10.1111/j.1460-2695.2009.01381.x
Marahleh G, Kheder ARI, Hamad HF. Creep-life prediction of service-exposed turbine blades. Mater Sci. 2006; 42: 476-81. https://doi.org/10.1007/s11003-006-0103-8
Puspitasari P, Andoko A, Kurniawan P. Failure analysis of a gas turbine blade: A review. IOP Conf Ser Mater Sci Eng. 2011; 1034(1): 012156. https://doi.org/10.1088/1757-899X/1034/1/012156
Karaivanov VG, Mazzotta DW, Chyu MK, Slaughter WS, Alvin MA. Three-dimensional modeling of creep damage in airfoils for advanced turbine systems. Proceedings of the ASME Turbo Expo 2008: Power for Land, Sea, and Air. Volume 5: Structures and Dynamics, Parts A and B. Berlin, Germany: June 9-13, 2008, pp. 225-234. https://doi.org/10.1115/GT2008-51278
Liu D, Li H, Liu Y. Numerical simulation of creep damage and life prediction of superalloy turbine blade. Math Probl Eng. 2015; 2015: 732502. https://doi.org/10.1155/2015/732502
Vacchieri E, Holdsworth SR, Costa A, Poggio E, Riva A, Villari P. Creep–fatigue interaction in two gas turbine Ni based superalloys subjected to service-like conditions. Mater High Temp. 2014; 31(4): 348-56. https://doi.org/10.1179/0960340914Z.00000000052
Yan X, Nie J. Creep-fatigue tests on full scale directionally solidified turbine blades. J Eng Gas Turbines Power. 2008; 130(4): 044501. https://doi.org/10.1115/1.2901174
Sun D, Ma G, Wan Z, Gao J. Study on creep-fatigue interaction mechanism and life prediction of aero-engine turbine blade. Eng Fail Anal. 2023; 154: 107715. https://doi.org/10.1016/j.engfailanal.2023.107715
Paulose N, Fernando CD, Banerjee A, Sahu JK, Narendra Babu SN. Creep–fatigue interaction study on gas turbine engine alloy. In Chaari F, Gherardini F, Ivanov V, Haddar M, Eds., Lecture Notes in Mechanical Engineering. 2018; pp. 323-33. https://doi.org/10.1007/978-981-10-6002-1_25
Poursaeidi E, Kavandi A, Torkashvand K. Study of creep–fatigue crack growth behavior in a gas turbine casing. J Fail Anal Preven. 2018; 18: 1607-15. https://doi.org/10.1007/s11668-018-0559-5
Igumenov IK, Aksenov AN. Thermal barrier coatings on gas turbine blades: Chemical vapor deposition. Therm Eng. 2017; 64: 865-73. https://doi.org/10.1134/S0040601517120035
Mazur Z, Luna-Ramirez A, Juárez-Islas JA, Campos-Amezcua A. Failure analysis of a gas turbine blade made of Inconel 738LC alloy. Eng Fail Anal. 2005; 12(3): 474-86. https://doi.org/10.1016/j.engfailanal.2004.10.002
Bannazadeh R, Riahi M, Aieneravaie M. Failure analysis of a gas turbine blade made of inconel 738LC super alloy. Amirkabir J Mech Eng. 2018; 50(1): 103-12. https://doi.org/10.22060/mej.2016.773
Vaezi M, Soleymani M. Creep Life prediction of inconel 738 gas turbine blade. J Appl Sci. 2009; 9(10): 1950-5. https://doi.org/10.3923/jas.2009.1950.1955
Bonakdar A, Molavi-Zarandi M, Chamanfar A, Jahazi M, Firoozrai A, Morin E. Finite element modeling of the electron beam welding of Inconel-713LC gas turbine blades. J Manuf Process. 2017; 26: 339-54. https://doi.org/10.1016/j.jmapro.2017.02.011
Chamanfar A, Jahazi M, Bonakdar A, Morin E, Firoozrai A. Cracking in fusion zone and heat affected zone of electron beam welded Inconel-713LC gas turbine blades. Mater Sci Eng A. 2015; 642: 230-40. https://doi.org/10.1016/j.msea.2015.06.087
Patsa CK, Mohammed S. Structural analysis of super alloy gas turbine blade using fea. Int J Eng Res Technol. 2014; 3(1): 3068-72.
Khan MA, Sundarrajan S, Natarajan S. Influence of plasma coatings on Inconel 617 for gas turbine applications. Surf Eng. 2014; 30(9): 656-61. https://doi.org/10.1179/1743294414Y.0000000296
Ma D. Novel casting processes for single-crystal turbine blades of superalloys. Front Mech Eng. 2018; 13(1): 3-16. https://doi.org/10.1007/s11465-018-0475-0
Arakere NK, Swanson G. Effect of crystal orientation on fatigue failure of single crystal nickel base turbine blade superalloys. J Eng Gas Turbines Power. 2002; 124(1): 161-76. https://doi.org/10.1115/1.1413767
Angel NM, Basak A. On the fabrication of metallic single crystal turbine blades with a commentary on repair via additive manufacturing. J Manuf Mater Process. 2020; 4(4): 101. https://doi.org/10.3390/jmmp4040101
Sinha A, Swain B, Behera A, Mallick P, Samal SK, Vishwanatha HM, Behera A. A review on the processing of aero-turbine blade using 3D print techniques. J Manuf Mater Process. 2022; 6(1): 16. https://doi.org/10.3390/jmmp6010016
Xu L, Sun Z, Ruan Q, Xi L, Gao J, Li Y. Development trend of cooling technology for turbine blades at super-high temperature of above 2000 K. Energies. 2023; 16(2): 668. https://doi.org/10.3390/en16020668
Han JC. Recent studies in turbine blade cooling. Int J Rotat Mach. 2004; 10(6): 443-57. https://doi.org/10.1155/S1023621X04000442
Han JC. Turbine blade cooling studies at Texas A&M University: 1980-2004. J Thermophys Heat Transf. 2006; 20(2): 161-87. https://doi.org/10.2514/1.15403
Takeishi K, Aoki S, Sato T, Tsukagoshi K. Film cooling on a gas turbine rotor blade. J Turbomach. 1992; 114(4): 828-34. https://doi.org/10.1115/1.2928036.
Glezer B, Moon HK, O’Connell T. A novel technique for the internal blade cooling. In Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers;1996; 78750: V004T09A015. https://doi.org/10.1115/96-GT-181
Iacovides H, Launder BE. Computational fluid dynamics applied to internal gas-turbine blade cooling: a review. Int J Heat Fluid Flow. 1995; 16(6): 454-70. https://doi.org/10.1016/0142-727X(95)00072-X
Han JC, Rallabandi A. Turbine blade film cooling using PSP technique. Front Heat Mass Transf. 2010; 1(1): 013001. http://dx.doi.org/10.5098/hmt.v1.1.3001
Gao Z, Han JC. Influence of film-hole shape and angle on showerhead film cooling using PSP technique. J Heat Transf. 2009; 131(6): 061701. https://doi.org/10.1115/1.3082413
Singh SO, Prasad BN. Influence of different means of turbine blade cooling on the thermodynamic performance of combined cycle. Appl Therm Eng. 2008; 28(17-18): 2315-26. https://doi.org/10.1016/j.applthermaleng.2008.01.022
Sunden B, Xie G. Gas turbine blade tip heat transfer and cooling: a literature survey. Heat Transf Eng. 2010; 31(7): 527-54. https://doi.org/10.1080/01457630903425320
Bunker RS. Axial turbine blade tips: function, design, and durability. J Propul Power. 2006; 22(2): 271-85. https://doi.org/10.2514/1.11818
Ito S, Goldstein RJ, Eckert ER. Film cooling of a gas turbine blade. J Eng Gas Turbines Power. 1978; 100(3): 476-81. https://doi.org/10.1115/1.3446382
Dring RP, Blair MF, Joslyn HD. An experimental investigation of film cooling on a turbine rotor blade. J Eng Gas Turbines Power. 1980; 102(1): 81-7. https://doi.org/10.1115/1.3230238
Joo J, Durbin P. Simulation of turbine blade trailing edge cooling. J Fluids Eng. 2009; 131(2): 021102. https://doi.org/10.1115/1.3054287
Han JC, Huh M. Recent studies in turbine blade internal cooling. In TURBINE-09. Proceedings of International Symposium on Heat Transfer in Gas Turbine Systems. Antalya, Turkey: August 9-14, 2009. https://doi.org/10.1615/ICHMT.2009.HeatTransfGasTurbSyst.460
Han JC, Ekkad S. Recent development in turbine blade film cooling. Int J Rotating Mach. 2001; 7(1): 21-40. https://doi.org/10.1155/S1023621X01000033
Wilcock RC, Young JB, Horlock JH. The effect of turbine blade cooling on the cycle efficiency of gas turbine power cycles. J Eng Gas Turbines Power. 2005; 127(1): 109-20. https://doi.org/10.1115/1.1805549
Nowak G, Wróblewski W. Optimization of blade cooling system with use of conjugate heat transfer approach. Int J Thermal Sci. 2011; 50(9): 1770-81. https://doi.org/10.1016/j.ijthermalsci.2011.04.001
Hylton LD, Mihelc MS, Turner ER, Nealy DA, York RE. Analytical and experimental evaluation of the heat transfer distribution over the surfaces of turbine vanes. 1983; Document ID: 19830020105. Available from: https://ntrs.nasa.gov/api/citations/19830020105/downloads/19830020105.pdf
Storti B, Garelli L, Storti M, D'elia J. Optimization of an internal blade cooling passage configuration using a Chimera approach and parallel computing. Finite Elem Anal Des. 2020; 177: 103423. https://doi.org/10.1016/j.finel.2020.103423
Mazaheri K, Zeinalpour M, Bokaei HR. Turbine blade cooling passages optimization using reduced conjugate heat transfer methodology. Appl Therm Eng. 2016; 103: 1228-36. https://doi.org/10.1016/j.applthermaleng.2016.05.007
Amaral S, Verstraete T, Van den Braembussche R, Arts T. Design and optimization of the internal cooling channels of a high pressure turbine blade—part I: methodology. J Turbomach. 2010; 132(2): 021013. https://doi.org/10.1115/1.3104614
Hou NX, Gou WX, Wen ZX, Yue ZF. The influence of crystal orientations on fatigue life of single crystal cooled turbine blade. Mater Sci Eng: A. 2008; 492(1-2): 413-8. https://doi.org/10.1016/j.msea.2008.03.043
Gallerneau F, Chaboche JL. Fatigue life prediction of single crystals for turbine blade applications. Int J Damage Mech. 1999; 8(4): 404-27. https://doi.org/10.1177%2F105678959900800407
He N, Feng P, Li ZW, Tan LG, Pang T, Chen YZ, Yang C. Fatigue life prediction of centrifugal fan blades in the ventilation cooling system of the high-speed-train. Eng Fail Anal. 2021; 124: 105373. https://doi.org/10.1016/j.engfailanal.2021.105373
Holländer D, Kulawinski D, Weidner A, Thiele M, Biermann H, Gampe U. Small-scale specimen testing for fatigue life assessment of service-exposed industrial gas turbine blades. Int J Fatigue. 2016; 92: 262-71. https://doi.org/10.1016/j.ijfatigue.2016.07.014
Adam TJ, Exner W, Wierach P. Taurine-Modified Boehmite Nanoparticles for GFRP Wind Turbine Rotor Blade Fatigue Life Enhancement. Materials. 2021; 14(22): 6997. https://doi.org/10.3390/ma14226997
Chen C, Zhang XY, Yan XJ, Ren J, Huang DW, Qi MJ. Effect of laser shock peening on combined low-and high-cycle fatigue life of casting and forging turbine blades. J Iron Steel Res Int. 2018; 25(1): 108-19. https://doi.org/10.1007/s42243-017-0013-z
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2023 Kazem Reza Kashyzadeh, Kambiz Souri